Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-01T03:45:50.287Z Has data issue: false hasContentIssue false

A nonlinear and semi-analytical actuator disk method accounting for general hub shapes. Part 1. Open rotor

Published online by Cambridge University Press:  08 March 2016

R. Bontempo
Affiliation:
Dipartimento di Ingegneria Industriale, Universitá degli Studi di Napoli Federico II, via Claudio 21, Naples 80125, Italy
M. Manna*
Affiliation:
Dipartimento di Ingegneria Industriale, Universitá degli Studi di Napoli Federico II, via Claudio 21, Naples 80125, Italy
*
Email address for correspondence: [email protected]

Abstract

The paper presents a newly developed method for the analysis of the flow around open rotors characterised by hubs of general shape. The exact and implicit solution of the axysimmetric, inviscid and incompressible flow is represented as the superposition of infinite ring vortices properly arranged along the hub surface and the rotor wake. The solution is made explicit through a semi-analytical and iterative procedure. The proposed semi-analytical approach can deal with hubs of arbitrary shape and with quite general rotor load distributions. The method strongly couples the flow induced by the rotor and the hub. Moreover, the contraction/divergence and the rotation of the wake can be fully taken into account. The results of the semi-analytical method are also compared with those obtained with a widely diffused actuator disk model based on computational fluid dynamics (CFD) techniques. Finally, in comparison with more advanced methods, such as those relying on a CFD approach, this method is characterised by an extremely reduced computational cost. The computer code is freely available on contacting the authors.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, J. B. & Cummings, D. E. 1972 A design procedure for large-hub propellers. J. Ship Res. 16 (3), 167193.CrossRefGoogle Scholar
Bontempo, R.2014 The nonlinear actuator disk as applied to open and ducted rotors. PhD thesis, University of Naples Federico II.Google Scholar
Bontempo, R., Cardone, M., Manna, M. & Vorraro, G. 2014 Ducted propeller flow analysis by means of a generalized actuator disk model. Energy Proc. 45C, 11071115.CrossRefGoogle Scholar
Bontempo, R., Cardone, M., Manna, M. & Vorraro, G. 2015a A comparison of nonlinear actuator disk methods for the performance analysis of ducted marine propellers. Proc. Inst. Mech. Eng. A 229 (5), 539548. Also available in Proceedings of the 11th European Turbomachinery Conference, Madrid, 2015.CrossRefGoogle Scholar
Bontempo, R., Cardone, M. & Manna, M. 2015b Performance analysis of ducted marine propellers. Part I. Decelerating duct. Appl. Ocean Res.; doi:10.1016/j.apor.2015.10.005.Google Scholar
Bontempo, R. & Manna, M. 2013 Solution of the flow over a non-uniform heavily loaded ducted actuator disk. J. Fluid Mech. 728, 163195.CrossRefGoogle Scholar
Bontempo, R. & Manna, M. 2014 Performance analysis of open and ducted wind turbines. Appl. Energy 136, 405416.CrossRefGoogle Scholar
Bontempo, R. & Manna, M. 2016a Effects of duct cross section camber and thickness on the performance of ducted propulsion systems for aeronautical applications. Intl J. Aerosp. Engng; doi:10.1155/2016/8913901.CrossRefGoogle Scholar
Bontempo, R. & Manna, M. 2016b Effects of the duct thrust on the performance of ducted wind turbines. Energy; doi:10.1016/j.energy.2016.01.025.CrossRefGoogle Scholar
Carlton, J. 2007 Marine Propellers and Propulsion, 2nd edn. Butterworth-Heinemann.Google Scholar
Chen, H. C. & Patel, V. C.1985 Calculation of trailing-edge, stern and wake flows by a time-marching solution of the partially-parabolic equations. Tech. Rep. 285. Iowa Inst. Hydraulic Research.Google Scholar
Conway, J. T. 1998 Exact actuator disk solutions for non-uniform heavy loading and slipstream contraction. J. Fluid Mech. 365, 235267.CrossRefGoogle Scholar
Conway, J. T. 2000 Analytical solutions for the newtonian gravitational field induced by matter within axisymmetric boundaries. Mon. Not. R. Astron. Soc. 316 (3), 540554.CrossRefGoogle Scholar
Gibson, I. S.1972 Application of vortex singularities to ducted propellers. PhD thesis, University of Newcastle upon Tyne.Google Scholar
Goldstein, S. 1929 On the vortex theory of screw propellers. Proc. R. Soc. Lond. A 123 (792), 440465.Google Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 2007 Tables of Integrals, Series and Products, 7th edn. Academic.Google Scholar
Hess, J. L. & Valarezo, W. O. 1985 Calculation of steady flow about propellers using a surface panel method. J. Propul. Power 1 (6), 470476.CrossRefGoogle Scholar
Hoekstra, M. 2006 A rans-based analysis tool for ducted propeller systems in open water condition. International Shipbuilding Progress 53 (3), 205227.Google Scholar
Kerwin, J. E. & Lee, C. S. 1978 Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory. Trans. Soc. Naval Archit. Mar. Engng 218253.Google Scholar
Kerwin, J. E. & Leopold, R. 1964 A design theory for subcavitating propellers. Trans. Soc. Naval Archit. Mar. Engng 72, 294335.Google Scholar
Lerbs, H. W. 1952 Moderately loaded propellers with a finite number of blades and an arbitrary distribution of circulation. Trans. Soc. Naval Archit. Mar. Engng 60, 73123.Google Scholar
Lewis, R. I. 1991 Vortex Element Methods for Fluid Dynamic Analysis of Engineering Systems. Cambridge University Press.CrossRefGoogle Scholar
Ludolph, K.1977 Propeller-hub interference effects using an approximate lifting surface theory. Tech. Rep. File No. TM 77–198. Applied Research Laboratory, The Pennsylvania State University.Google Scholar
Lyness, J. N. 1970 Algorithm 379: squank (simpson quadrature used adaptivity-noise killed). Commun. ACM 13 (4), 260263.CrossRefGoogle Scholar
Martensen, E. 1959 Berechnung der druckverteilung an gitterprofilen in ebener potentialstromung mit einer fredholmschen integralgleichung. Arch. Rat. Mech. 3, 235270.CrossRefGoogle Scholar
Mccormick, B. W. 1955 The effect of a finite hub on the optimum propeller. J. Aeronaut. Sci. 22 (9), 645650.CrossRefGoogle Scholar
Ryan, P. G. & Glover, E. J. 1972 A ducted propeller design method: a new approach using surface vorticity distribution techniques and lifting line theory. Trans. R. Institut. Naval Architects 114, 545563.Google Scholar
Sonine, N. J. 1880 Recherches sur les fonction cylindriques et le développement des fonctions continues en séries. Math. Ann. 16 (1), 180.CrossRefGoogle Scholar
Stern, F., Kim, H. T., Patel, V. C. & Chen, H. C. 1988 Computation of viscous flow around propeller-shaft configurations. J. Ship Res. 32 (4), 263284.CrossRefGoogle Scholar
Stern, F., Toda, Y. & Kim, H. T. 1991 Computation of viscous flow around propeller-body configurations: Iowa axisymmetric body. J. Ship Res. 35 (2), 151161.CrossRefGoogle Scholar
Tachmindji, A. J.1956 The potential problem of the optimum propeller with finite hub. Tech. Rep., DTIC Document.CrossRefGoogle Scholar
Wang, M. H.1985 Hub effects in propeller design and analysis. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Wu, T. Y. 1962 Flow through a heavily loaded actuator disc. Schiffstechnik 9, 134138.Google Scholar
Zhang, D. H., Broberg, L., Larsson, L. & Dyne, G. 1991 A method for computing stern flows with an operating propeller. Trans. R. Institut. Naval Architects 134, 245259.Google Scholar