Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T07:54:52.952Z Has data issue: false hasContentIssue false

Newtonian pizza: spinning a viscous sheet

Published online by Cambridge University Press:  02 August 2010

PETER D. HOWELL
Affiliation:
Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford OX1 3LB, UK
BENOIT SCHEID*
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA TIPs – Fluid Physics unit, Université Libre de Bruxelles, C.P. 165/67, 1050 Brussels, Belgium
HOWARD A. STONE
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: [email protected]

Abstract

We study the axisymmetric stretching of a thin sheet of viscous fluid driven by a centrifugal body force. Time-dependent simulations show that the sheet radius R(t) tends to infinity in finite time. As time t approaches the critical time t*, the sheet becomes partitioned into a very thin central region and a relatively thick rim. A net momentum and mass balance in the rim leads to a prediction for the sheet radius near the singularity that agrees with the numerical simulations. By asymptotically matching the dynamics of the sheet with the rim, we find that the thickness h in the central region is described by a similarity solution of the second kind, with h ∝ (t* − t)α where the exponent α satisfies a nonlinear eigenvalue problem. Finally, for non-zero surface tension, we find that the exponent increases rapidly to infinity at a critical value of the rotational Bond number B = 1/4. For B > 1/4, surface tension defeats the centrifugal force, causing the sheet to retract rather than to stretch, with the limiting behaviour described by a similarity solution of the first kind.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barenblatt, G. I. 1996 Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge University Press.CrossRefGoogle Scholar
Buckmaster, J. D., Nachman, A. & Ting, L. 1975 The buckling and stretching of a viscida. J. Fluid Mech. 69, 120.CrossRefGoogle Scholar
Cao, F., Khayat, R. E. & Puskas, J. E. 2005 Effect of inertia and gravity on the draw resonance in high-speed film casting of Newtonian fluids. Intl J. Solids Struct. 42, 57345757.CrossRefGoogle Scholar
Dewynne, J. N., Ockendon, J. R. & Wilmott, P. 1992 A systematic derivation of the leading-order equations for extensional flows in slender geometries. J. Fluid Mech. 244, 323338.CrossRefGoogle Scholar
Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865930.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.CrossRefGoogle Scholar
England, P. & McKenzie, D. 1982 A thin viscous sheet model for continental deformation. Geophys. J. R. Astron. Soc. 70, 295321.CrossRefGoogle Scholar
Erneux, T. & Davis, S. H. 1993 Nonlinear rupture of free films. Phys. Fluids A 5, 11171122.CrossRefGoogle Scholar
Hills, C. P. & Moffatt, H. K. 2000 Rotary honing: a variant of the Taylor paint-scraper problem. J. Fluid Mech. 418, 119135.CrossRefGoogle Scholar
Howell, P. D. 1996 Models for thin viscous sheets. Eur. J. Appl. Math. 7, 321343.CrossRefGoogle Scholar
Huang, J. C. P. 1970 The break-up of axisymmetric liquid sheets. J. Fluid Mech. 43, 305319.CrossRefGoogle Scholar
Ida, M. P. & Miksis, M. J. 1996 Thin film rupture. Appl. Math. Lett. 9, 3540.CrossRefGoogle Scholar
Jensen, O. E. 1995 The spreading of insoluble surfactant at the free surface of a deep fluid layer. J. Fluid Mech. 293, 349378.CrossRefGoogle Scholar
Muite, B. K. 2004 The flow in a cylindrical container with a rotating end wall at small but finite Reynolds number. Phys. Fluids 16, 36143626.CrossRefGoogle Scholar
Ng, T. S. K., McKinley, G. H. & Padmanabhan, M. 2006 Linear to non-linear rheology of wheat flour dough. Tech. Rep. 06-P-08. Massachusetts Institute of Technology.CrossRefGoogle Scholar
Papageorgiou, D. T. 1995 On the breakup of viscous liquid threads. Phys. Fluids 7, 15291544.CrossRefGoogle Scholar
Pearson, J. R. A. 1985 Mechanics of Polymer Processing. Elsevier.Google Scholar
Pilkington, L. A. B. 1969 Review lecture. The float glass process. Proc. R. Soc. Lond. A 314, 125.Google Scholar
Renardy, M. 2001 Finite time breakup of viscous filaments. Z. Angew. Math. Phys. 52, 881.CrossRefGoogle Scholar
Ribe, N. M. 2002 A general theory for the dynamics of thin viscous sheets. J. Fluid Mech. 457, 255283.CrossRefGoogle Scholar
Savart, F. 1833 Mémoire sur le choc d'une veine liquide lancée contre un plan circulaire. Ann. Chim. 54, 5687.Google Scholar
Savva, N. & Bush, J. W. M. 2009 Viscous sheet retraction. J. Fluid Mech. 626, 211240.CrossRefGoogle Scholar
Scheid, B., Quiligotti, S., Tran, B. & Stone, H. 2009 Lateral shaping and stability of a stretching viscous sheet. Eur. Phys. J. B 68, 487494.CrossRefGoogle Scholar
Taylor, G. I. 1959 a The dynamics of thin sheets of fluid. Part II. Waves on fluid sheets. Proc. R. Soc. Lond. A 253, 296312.Google Scholar
Taylor, G. I. 1959 b The dynamics of thin sheets of fluid. Part III. Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253, 313321.Google Scholar
Tilley, B. S., Petropoulos, P. G. & Papageorgiou, D. T. 2001 Dynamics and rupture of planar electrified liquid sheets. Phys. Fluids 13, 35473563.CrossRefGoogle Scholar
Vaynblat, D., Lister, J. R. & Witelski, T. P. 2001 a Rupture of thin viscous films by van der Waals forces: evolution and self-similarity. Phys. Fluids 13, 11301140.CrossRefGoogle Scholar
Vaynblat, D., Lister, J. R. & Witelski, T. P. 2001 b Symmetry and self-similarity in rupture and pinchoff: a geometric bifurcation. Eur. J. Appl. Math. 12, 209232.CrossRefGoogle Scholar
Wagner, B. 2005 An asymptotic approach to second-kind similarity solutions of the modified porous-medium equation. J. Engng Math. 53, 201220.CrossRefGoogle Scholar