Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T01:26:58.599Z Has data issue: false hasContentIssue false

A new approach to understanding and modelling the influence of wall roughness on friction factors for pipe and channel flows

Published online by Cambridge University Press:  01 October 2008

H. HERWIG
Affiliation:
Institute for Thermo-Fluid Dynamics, Hamburg University of Technology, Denickestr. 17, 21073 Hamburg, Germany
D. GLOSS
Affiliation:
Institute for Thermo-Fluid Dynamics, Hamburg University of Technology, Denickestr. 17, 21073 Hamburg, Germany
T. WENTERODT
Affiliation:
Institute for Thermo-Fluid Dynamics, Hamburg University of Technology, Denickestr. 17, 21073 Hamburg, Germany

Abstract

In this study, it is shown how the equivalent sand roughness required in the Moody chart can be calculated for arbitrarily shaped wall roughnesses. After a discussion of how to define the wall location and roughness height in the most reasonable way, a numerical approach based on the determination of entropy production in rough pipes and channels is presented. As test cases, three different two-dimensional roughness types have been chosen which are representative of regular roughnesses on machined surfaces. In the turbulent range, skin friction results with these test roughnesses can be linked to Nikuradse's sand roughness results by a constant factor. For laminar flows, a significant effect of wall roughness is identified which in most other studies is neglected completely. The dissipation model of this study is validated with experimental data for laminar and turbulent flows.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bejan, A. 1996 Entropy Generation Minimization. CRS Press, Boca Raton.Google Scholar
Bradshaw, P. 2000 A note on ‘critical roughness height’ and ‘transitional roughness’. Phys. Fluids 12 (6), 16111614.CrossRefGoogle Scholar
Colebrook, C. F. 1939 Turbulent flow in pipes with particular reference to the transition between the smooth and rough pipe laws. J. Inst. Civil Engrs Lond. 11, 133156.CrossRefGoogle Scholar
Croce, G. & D'Agaro, P. 2005 Numerical simulation of roughness effect on microchannel heat transfers and pressure drop in laminar flow. J. Phys. D: Appl. Phys. 38, 15181530.CrossRefGoogle Scholar
Gloss, D., Dittmer, J. & Herwig, H. 2008 A systematic approach to wall roughness effects in laminar channel flows: experiments and modelling. In Proc. ASME ICNMM2008.CrossRefGoogle Scholar
Herwig, H. & Kautz, C. 2007 Technische Thermodynamik. Pearson Studium, München.Google Scholar
Herwig, H. & Kock, F. 2007 Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems. Heat Mass Transfer 43, 207215.CrossRefGoogle Scholar
Hesselgreaves, J. E. 2000 Rationalisation of second law analysis of heat exchangers. Intl J. Heat Mass Transfer 32, 41894204.CrossRefGoogle Scholar
Hu, Y., Werner, C. & Li, D. 2004 Influence of the three-dimensional heterogeneous roughness on electrokinetic transport in microchannels. J. Colloid Interface Sci. 280, 527536.CrossRefGoogle ScholarPubMed
Kandlikar, S. G., Schmitt, D., Carrano, A. L. & Taylor, J. B. 2005 Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels. Phys. Fluids 17, 111.CrossRefGoogle Scholar
Kleinstreuer, C. & Koo, J. 2004 Computational analysis of wall roughness effects for liquid flow in micro-conduits. Trans. ASME I: J. Fluids Engng 126, 19.Google Scholar
Kock, F. & Herwig, H. 2004 Local entropy production in turbulent shear flows: a high Reynolds number model with wall functions. Intl J. Heat Mass Transfer 47, 22052215.CrossRefGoogle Scholar
Langelandsvik, L. I., Kunkel, G. J. & Smits, A. J. 2008 Flow in a commercial steel pipe. J. Fluid Mech. 595, 323339.CrossRefGoogle Scholar
Mathieu, J. & Scott, J. 2000 An Introduction to Turbulent Flow. Cambridge University Press.CrossRefGoogle Scholar
Moody, L. F. 1944 Friction factors for pipe flow. Trans. ASME 66, 671684.Google Scholar
Munson, B. R., Young, D. F. & Okiishi, T. H. 2005 Fundamentals of Fluid Mechanics, 5th edn. John Wiley.Google Scholar
Nikuradse, J. 1930 Turbulente Strömung in nicht kreisförmigen Rohren. Ing.-Arch. 1, 306332.CrossRefGoogle Scholar
Nikuradse, J. 1933 Strömungsgesetze in rauhen Rohren. In Forschungsheft. VDI, Düsseldorf.Google Scholar
Perry, A. E., Schofield, W. H. & Joubert, P. N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37, 383413.CrossRefGoogle Scholar
Rosen, M. A. 1998 Second-law analysis: approaches and implications. Intl J. Energy Res. 23, 415429.3.0.CO;2-7>CrossRefGoogle Scholar
Schiller, L. 1923 Über den Strömungswiderstand von Rohren verschiedenen Querschnitts- und Rauhigkeitsgrades. Z. Angew. Math. Mech. 3, 213.CrossRefGoogle Scholar
Schlichting, H. 1965 Grenzschicht-Theorie, 5th edn. G. Braun, Karlsruhe.Google Scholar
Schlichting, H. & Gersten, K. 2000 Boundary Layer Theory, 8th edn. Springer.CrossRefGoogle Scholar
Shockling, M. A., Allen, J. J. & Smits, A. J. 2006 Roughness effects in turbulent pipe flows. J. Fluid Mech. 564, 267285.CrossRefGoogle Scholar
Sletfjerding, E., Gudmundsson, J. & Sjøen, K. 1998 Flow experiments with high pressure natural gas in coated and plain pipes. In Proc. 1998 PSIG Conf. Denver, Colorado.Google Scholar
Streeter, V. L. 1936 Frictional resistance in artificially roughened pipes. Trans. ASCE 101, 681704.Google Scholar
Wang, S. P., Chen, Q. L., Yin, Q. H. & Hua, B. 2003 Exergy destruction due to mean flow and fluctuating motion in incompressible turbulent flows through a tube. Energy 28, 809823.CrossRefGoogle Scholar
White, F. M. 2005 Viscous Fluid Flow, 3rd edn. McGraw-Hill.Google Scholar
Yakhot, V. & Orszag, S. A. 1986 Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1 (1).CrossRefGoogle Scholar