Hostname: page-component-6587cd75c8-6qszs Total loading time: 0 Render date: 2025-04-23T15:29:59.272Z Has data issue: false hasContentIssue false

Multiscale understanding of structural effect on explosive dispersal of granular media

Published online by Cambridge University Press:  14 November 2024

Lvlan Miao
Affiliation:
State Key Laboratory of Explosion Science and Safety Protection, Explosion Protection and Emergency Disposal Technology Engineering Research Centre of the Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
Jiarui Li
Affiliation:
Institute of Applied Physics and Computational Mathematics, Beijing 1000871, China
Kun Xue*
Affiliation:
State Key Laboratory of Explosion Science and Safety Protection, Explosion Protection and Emergency Disposal Technology Engineering Research Centre of the Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
*
Email address for correspondence: [email protected]

Abstract

Explosive dispersal of granular media widely occurs in nature across various length scales, enabling engineering applications ranging from commercial or military explosive systems to the loss prevention industry. However, the correlation between the explosive dispersal behaviour and the structure of dispersal system is far from completely understood, thereby compromising the prediction of the explosive dispersal outcome resulting from a specific dispersal system. Here, we investigate the dispersal behaviours of densely packed particle rings driven by the enclosed pressurized gases using coarse-grained computational fluid dynamics–discrete parcel method. Distinct dispersal modes emerge from the dispersal systems with vastly varying sets of the macro- and micro-scale structural parameters in terms of the dispersal completeness and the spatial uniformity of the dispersed mass. Further investigation reveals the variation in the dispersal modes arises from the collective effects of multiscale gas–particle coupling relationships. Specifically, the macroscale coupling dictates the cyclic momentum/energy transfer between gases and particle ring as an entirety. The mesoscale coupling relates to the inter-pore gas filtration through the thickness of the particle ring, leading to the mass/energy reduction of the explosive source. The microscale coupling involves the individual particle dynamics influenced by the local flow parameters. A persistent macroscale coupling results in an incomplete dispersal which takes the form of an aggregated annular band, whereas the meso- and micro-scale couplings alter the macroscale coupling to a different extent. By incorporating the effects of the variety of structural parameters on the multiscale gas–particle coupling relationships, a non-dimensional parameter referred to as the modified mass ratio is constructed, which shows an explicit correlation with the dispersal mode. We proceed to establish a dispersal ring model in the continuum frame which accounts for the macro and meso-scale coupling effects. This model proves to be capable of successfully predicting the ideal and validated failed dispersal modes.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aglitskiy, Y., et al. 2010 Basic hydrodynamics of Richtmyer–Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions. Phil. Trans. R. Soc. A: Math. Phys. Engng Sci. 368, 17391768.CrossRefGoogle ScholarPubMed
Baer, M.R. & Nunziato, J.W. 1986 A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Intl J. Multiphase Flow 12, 861889.CrossRefGoogle Scholar
Bai, C.-H., Wang, Y., Xue, K. & Wang, L.-F. 2018 Experimental study of detonation of large-scale powder–droplet–vapor mixtures. Shock Waves. 28, 599611.CrossRefGoogle Scholar
Black, W.J., Denissen, N. & McFarland, J.A. 2018 Particle force model effects in a shock-driven multiphase instability. Shock Waves 28, 463472.CrossRefGoogle Scholar
Britan, A. & Ben-Dor, G. 2006 Shock tube study of the dynamical behavior of granular materials. Intl J. Multiphase Flow 32, 623642.CrossRefGoogle Scholar
Crowl, D.A. 2003. Understanding Explosions. Wiley.CrossRefGoogle Scholar
Di Felice, R. 1994 The voidage function for fluid-particle interaction systems. Intl J. Multiphase Flow 20, 153159.CrossRefGoogle Scholar
Eckhoff, R.K. 2009 Dust explosion prevention and mitigation, status and developments in basic knowledge and in practical application. Intl J. Chem. Engng 2009, 569825.Google Scholar
Fernández-Godino, M.G., Ouellet, F., Haftka, R.T. & Balachandar, S. 2019 Early time evolution of circumferential perturbation of initial particle volume fraction in explosive cylindrical multiphase dispersion. J. Fluids Engng 141, 120.CrossRefGoogle Scholar
Formenti, Y., Druitt, T.H. & Kelfoun, K. 2003 Characterisation of the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat, by video analysis. Bull. Volcanol. 65, 587605.CrossRefGoogle Scholar
Frost, D.L. 2018 Heterogeneous/particle-laden blast waves. Shock Waves 28, 439449.CrossRefGoogle Scholar
Frost, D.L., Goroshin, S., Ripley, R.C. & Zhang, F. 2010. Jet formation during explosive particle dispersal. In 21st International Symposium of Military Aspects of Blast and Shock, Jerusalem, Israel.Google Scholar
Frost, D.L., Grégoire, Y., Petel, O., Goroshin, S. & Zhang, F. 2012 Particle jet formation during explosive dispersal of solid particles. Phys. Fluids 24, 091109.CrossRefGoogle Scholar
Gai, G., Thomine, O., Hadjadj, A. & Kudriakov, S. 2020 Modeling of particle cloud dispersion in compressible gas flows with shock waves. Phys. Fluids 32, 023301.CrossRefGoogle Scholar
Hughes, K.T., Balachandar, S., Diggs, A., Haftka, R., Kim, N.H. & Littrell, D. 2020 Simulation-driven design of experiments examining the large-scale, explosive dispersal of particles. Shock Waves 30, 325347.CrossRefGoogle Scholar
Hughes, K.T., Charonko, J.J., Prestridge, K.P., Kim, N.H., Haftka, R.T. & Balachandar, S. 2021 Proton radiography of explosively dispersed metal particles with varying volume fraction and varying carrier phase. Shock Waves 31, 7588.CrossRefGoogle Scholar
Klemens, R., Gieras, M. & Kaluzny, M. 2007 Dynamics of dust explosions suppression by means of extinguishing powder in various industrial conditions. J. Loss Prev. Process. Ind. 20, 664674.CrossRefGoogle Scholar
Koneru, R.B., Rollin, B., Durant, B., Ouellet, F. & Balachandar, S. 2020 A numerical study of particle jetting in a dense particle bed driven by an air-blast. Phys. Fluids 32, 093301.CrossRefGoogle Scholar
Kun, X., Lvlan, M., Jiarui, L., Chunhua, B. & Baolin, T. 2023 Explosive dispersal of granular media. J. Fluid Mech. 959, A17.Google Scholar
Kuranz, C.C., et al. 2018 How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants. Nat. Commun. 9, 1564.CrossRefGoogle ScholarPubMed
Li, J., Xue, K., Zeng, J., Tian, B. & Guo, X. 2021 Shock-induced interfacial instabilities of granular media. J. Fluid Mech. 920, A22.Google Scholar
Ling, Y. & Balachandar, S. 2018 Simulation and scaling analysis of a spherical particle-laden blast wave. Shock Waves 28, 545558.CrossRefGoogle Scholar
Ling, Y., Balachandar, S. & Parmar, M. 2016 Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows. Phys. Fluids 28, 033304.CrossRefGoogle Scholar
Liu, X.D., Osher, S. & Chan, T. 1994 Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200212.CrossRefGoogle Scholar
Lv, H., Wang, Z., Zhang, Y. & Li, J. 2018 Shock attenuation by densely packed micro-particle wall. Exp. Fluids. 59, 140.CrossRefGoogle Scholar
Marayikkottu, A.V. & Levin, D.A. 2021 Influence of particle non-dilute effects on its dispersion in particle-laden blast wave systems. J. Appl. Phys. 130, 118.CrossRefGoogle Scholar
Marjanovic, G., Hackl, J., Shringarpure, M., Annamalai, S., Jackson, T.L. & Balachandar, S. 2018 Inviscid simulations of expansion waves propagating into structured particle beds at low volume fractions. Phys. Rev. Fluids 3, 094301.CrossRefGoogle Scholar
Marr, B.J., Pontalier, Q., Loiseau, J., Goroshin, S. & Frost, D.L. 2018 Suppression of jet formation during explosive dispersal of concentric particle layers. AIP Conf. Proc. 1979, 110011.CrossRefGoogle Scholar
Mehta, Y., Neal, C., Salari, K., Jackson, T.L., Balachandar, S. & Thakur, S. 2018 Propagation of a strong shock over a random bed of spherical particles. J. Fluid Mech. 839, 157197.CrossRefGoogle Scholar
Milne, A.M. 2016 Gurney analysis of porous shells. Propellants Explos. Pyrotech. 41 (4), 665671.CrossRefGoogle Scholar
Milne, A.M., Floyd, E., Longbottom, A.W. & Taylor, P. 2014 Dynamic fragmentation of powders in spherical geometry. Shock Waves 24, 501513.CrossRefGoogle Scholar
Mo, H., Lien, F.-S., Zhang, F. & Cronin, D.S. 2018 A numerical framework for the direct simulation of dense particulate flow under explosive dispersal. Shock Waves 28, 559577.CrossRefGoogle Scholar
Mo, H., Lien, F.S., Zhang, F. & Cronin, D.S. 2019 A mesoscale study on explosively dispersed granular material using direct simulation. J. Appl. Phys. 125, 214302.CrossRefGoogle Scholar
Osnes, A.N., Vartdal, M. & Pettersson Reif, B.A. 2018 Numerical simulation of particle jet formation induced by shock wave acceleration in a Hele-Shaw cell. Shock Waves 28, 451461.CrossRefGoogle Scholar
Pontalier, Q., Lhoumeau, M., Milne, A.M., Longbottom, A.W. & Frost, D.L. 2018 Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials. Shock Waves 28, 513531.CrossRefGoogle Scholar
Posey, J.W., Roque, B., Guhathakurta, S. & Houim, R.W. 2021 Mechanisms of prompt and delayed ignition and combustion of explosively dispersed aluminum powder. Phys. Fluids 33, 113308.CrossRefGoogle Scholar
Rigby, S.E., Fay, S.D., Tyas, A., Clarke, S.D., Reay, J.J., Warren, J.A., Gant, M. & Elgy, I. 2018 Influence of particle size distribution on the blast pressure profile from explosives buried in saturated soils. Shock Waves 28, 613626.CrossRefGoogle Scholar
Rogue, X., Rodriguez, G., Haas, J.F. & Saurel, R. 1998 Experimental and numerical investigation of the shock-induced fluidization of a particles bed. Shock Waves 8, 2945.CrossRefGoogle Scholar
Saurel, R., Favrie, N., Petitpas, F., Lallemand, M.-H. & Gavrilyuk, S.L. 2010 Modelling dynamic and irreversible powder compaction. J. Fluid Mech. 664, 348396.CrossRefGoogle Scholar
Sundaresan, S., Ozel, A. & Kolehmainen, J. 2018 Toward constitutive models for momentum, species, and energy transport in gas–particle flows. Annu. Rev. Chem. Biomol. Engng 9, 6181.CrossRefGoogle ScholarPubMed
Tian, B., Zeng, J., Meng, B., Chen, Q., Guo, X. & Xue, K. 2020 Compressible multiphase particle-in-cell method (CMP-PIC) for full pattern flows of gas-particle system. J. Comput. Phys. 418, 109602.CrossRefGoogle Scholar
Xue, K., Du, K., Shi, X., Gan, Y. & Bai, C. 2018 Dual hierarchical particle jetting of a particle ring undergoing radial explosion. Soft Matter 14, 44224431.CrossRefGoogle ScholarPubMed
Yan, G., Hai-Sui, Y. & Glenn, M.D. 2009. Simulation of granular material behaviour using DEM. In International Conference on Mining Science & Technology.CrossRefGoogle Scholar
Zhang, F., Ripley, R.C., Yoshinaka, A., Findlay, C.R., Anderson, J. & von Rosen, B. 2015 Large-scale spray detonation and related particle jetting instability phenomenon. Shock Waves 25, 239254.CrossRefGoogle Scholar