Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T17:45:53.360Z Has data issue: false hasContentIssue false

Moth-inspired methods for particle capture on a cylinder

Published online by Cambridge University Press:  17 December 2019

Thomas L. Spencer
Affiliation:
School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
Nina Mohebbi
Affiliation:
School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
Guangyuan Jin
Affiliation:
Jiangnan University, Wuxi Shi, Jiangsu214122, China
Matthew L. Forister
Affiliation:
Department of Biology, MS 314 University of Nevada, Reno, NV89557, USA
Alexander Alexeev
Affiliation:
School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
David L. Hu*
Affiliation:
School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA School of Biology, Georgia Institute of Technology, Atlanta, GA30332, USA
*
Email address for correspondence: [email protected]

Abstract

We study particle capture on an angled cylinder at a range of Péclet numbers. This system was inspired by the plumose antennae of certain species of male moths that intercept female pheromones at low Péclet numbers of 0.9–23. We use confocal microscopy to measure the branching patterns of 49 moths, spanning 12 families and two orders of magnitude in mass. Among the three levels of hierarchy in antennae, we find the middle level has a prevalent branching angle, $52^{\circ }\pm 12^{\circ }$ across our study set. Such intermediate branching angles are a surprising way to intercept molecules because they do not maximize the exposed surface area. To understand the benefits of angling cylinders into the flow, we study particle collection at high Péclet number using $10~\unicode[STIX]{x03BC}\text{m}$ drops that are several orders of magnitude larger than moth pheromones. Wind tunnel tests show that cylinders angled at $30^{\circ }{-}60^{\circ }$ are optimal for collection of particles, collecting 30 % more than when perpendicular to the flow. Simulations and smoke visualization show that angled cylinders bend incoming streamlines, creating a lingering effect near the cylinder that can enhance deposition by diffusion. We surmise that the optimal angle arises from a trade-off between the lingering effect, which decreases with increasing angle of the cylinder, and the cylinder’s increasing projected area as it is turned more perpendicular to the flow. Using a mathematical model, we show that only cylinders at low Péclet number show improved collection at intermediate angles. Thus, we cannot rationalize the high collection rates in our wind tunnel experiments at high Péclet number. We hope that our study will inspire more research into bio-inspired particle collection of angled surfaces, and find applications in sensors and filters.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amador, G. J., Mao, W., DeMercurio, P., Montero, C., Clewis, J., Alexeev, A. & Hu, D. L. 2015 Eyelashes divert airflow to protect the eye. J. R. Soc. Interface 12 (105), 20141294.CrossRefGoogle ScholarPubMed
Arshak, K., Moore, E., Lyons, G. M., Harris, J. & Clifford, S. 2004 A review of gas sensors employed in electronic nose applications. Sensors Rev. 24 (2), 181198.CrossRefGoogle Scholar
Bishop, R. E. D. & Hassan, A. Y. 1964 The lift and drag forces on a circular cylinder in a flowing fluid. Proc. R. Soc. Lond. A 277 (1368), 3250.Google Scholar
Bowker, G. E. & Crenshaw, H. C. 2007 Electrostatic forces in wind-pollination. Part 2. Simulations of pollen capture. Atmos. Environ. 41 (8), 15961603.CrossRefGoogle Scholar
Boyle, L., Flinchpaugh, H. & Hannigan, M. P. 2015 Natural soiling of photovoltaic cover plates and the impact on transmission. Renew. Energy 77, 166173.CrossRefGoogle Scholar
Chatterjee, D. K., Gnanasammandhan, M. K. & Zhang, Y. 2010 Small upconverting fluorescent nanoparticles for biomedical applications. Small 6 (24), 27812795.CrossRefGoogle ScholarPubMed
Cheer, A. Y. L. & Koehl, M. A. R. 1987a Fluid flow through filtering appendages of insects. Math. Med. Biol. 4 (3), 185199.CrossRefGoogle Scholar
Cheer, A. Y. L. & Koehl, M. A. R. 1987b Paddles and rakes: fluid flow through bristled appendages of small organisms. J. Theor. Biol. 129 (1), 1739.CrossRefGoogle Scholar
Chen, D.-R., Pui, D. Y. H., Hummes, D., Fissan, H., Quant, F. R. & Sem, G. J. 1998 Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA). J. Aero. Sci. 29 (5–6), 497509.CrossRefGoogle Scholar
Chen, X., Zhong, W., Tom, J., Kleinstreuer, C., Feng, Y. & He, X. 2016 Experimental-computational study of fibrous particle transport and deposition in a bifurcating lung model. Particuology 28, 102113.CrossRefGoogle Scholar
Craig, R. L., Peterson, P. K., Nandy, L., Lei, Z., Hossain, M. A., Camarena, S., Dodson, R. A., Cook, R. D., Dutcher, C. S. & Ault, A. P. 2018 Direct determination of aerosol pH: size-resolved measurements of submicrometer and supermicrometer aqueous particles. Analyt. Chem. 90 (19), 1123211239.CrossRefGoogle ScholarPubMed
Crowder, R. O. & Cussler, E. L. 1997 Mass transfer in hollow-fiber modules with non-uniform hollow fibers. J. Membr. Sci. 134 (2), 235244.CrossRefGoogle Scholar
Cussler, E. L. 2009 Diffusion: Mass Transfer in Fluid Systems. Cambridge University Press.CrossRefGoogle Scholar
Einstein, A. 1926 Investigations on the Theory of the Brownian Movement (ed. Fürth, R.). Methuen.Google Scholar
Espinosa-Gayosso, A., Ghisalberti, M., Ivey, G. N. & Jones, N. L. 2012 Particle capture and low-Reynolds-number flow around a circular cylinder. J. Fluid Mech. 710, 362378.CrossRefGoogle Scholar
Friedlander, S. K. 1958 Theory of aerosol filtration. Ind. Engng Chem. 50 (8), 11611164.CrossRefGoogle Scholar
Fuchs, N. A. 1964 The Mechanics of Aerosols. Pagamon.Google Scholar
Gewecke, M. & Heinzel, H.-G. 1980 Aerodynamic and mechanical properties of the antennae as air-current sense organs inLocusta migratoria. J. Compar. Physiol. 139 (4), 357366.CrossRefGoogle Scholar
Goossens, D., Offer, Z. Y. & Zangvil, A. 1993 Wind tunnel experiments and field investigations of eolian dust deposition on photovoltaic solar collectors. Solar Energy 50 (1), 7584.CrossRefGoogle Scholar
Greenspan, B. J., Moss, O. R., Schleiffer, K. E. & Eick, J. L.1996 Nebulizer device. US Patent 5,511,726.Google Scholar
Heydarabadi, H., Abdolzadeh, M. & Lari, K. 2017 Simulation of airflow and particle deposition settled over a tilted photovoltaic module. Energy 139, 10161029.CrossRefGoogle Scholar
Hinterwirth, A. J. & Daniel, T. L. 2010 Antennae in the hawkmoth Manduca sexta (Lepidoptera, Sphingidae) mediate abdominal flexion in response to mechanical stimuli. J. Compar. Physiol. A 196 (12), 947956.CrossRefGoogle ScholarPubMed
Huebsch, W. 2009 Fundamentals of Fluid Mechanics. John Wiley & Sons.Google Scholar
Karlson, P. & Butenandt, A. 1959 Pheromones (ectohormones) in insects. Annu. Rev. Entomol. 4 (1), 3958.CrossRefGoogle Scholar
Khurana, T. R. & Sane, S. P. 2016 Airflow and optic flow mediate antennal positioning in flying honeybees. eLife 5, e14449.Google Scholar
Koehl, M. A. 1994 Fluid Flow through Hair-Bearing Appendages: Feeding, Smelling and Swimming at Low and Intermediate Reynolds Numbers, vol. 49, pp. 157182. Symposia of the Society for Experimental Biology.Google Scholar
Krång, A.-S., Knaden, M., Steck, K. & Hansson, B. S. 2012 Transition from sea to land: olfactory function and constraints in the terrestrial hermit crab Coenobita clypeatus. Proc. R. Soc. Lond. B 279 (1742), 35103519.CrossRefGoogle ScholarPubMed
Krishnan, A., Prabhakar, S., Sudarsan, S. & Sane, S. P. 2012 The neural mechanisms of antennal positioning in flying moths. J. Expl Biol. 215 (17), 30963105.CrossRefGoogle ScholarPubMed
Kulmala, M., Mordas, G., Petäjä, T., Grönholm, T., Aalto, P. P., Vehkamäki, H., Hienola, A. I., Herrmann, E., Sipilä, M., Riipinen, I. et al. 2007 The condensation particle counter battery (CPCB): a new tool to investigate the activation properties of nanoparticles. J. Aerosol Sci. 38 (3), 289304.CrossRefGoogle Scholar
Kuwana, Y., Nagasawa, S., Shimoyama, I. & Kanzaki, R. 1999 Synthesis of the pheromone-oriented behaviour of silkworm moths by a mobile robot with moth antennae as pheromone sensors. Biosens. Bioelectr. 14 (2), 195202.CrossRefGoogle Scholar
Lee, K. W. & Liu, B. Y. H. 1982 Theoretical study of aerosol filtration by fibrous filters. Aerosol Sci. Technol. 1 (2), 147161.CrossRefGoogle Scholar
Loudon, C. & Koehl, M. A. 2000 Sniffing by a silkworm moth: wing fanning enhances air penetration through and pheromone interception by antennae. J. Expl Biol. 203 (19), 29772990.Google ScholarPubMed
Magono, C. & Takahashi, T. 1959 The electric charge on condensate and water droplets. J. Met. 16 (2), 167173.2.0.CO;2>CrossRefGoogle Scholar
Munson, B. R., Okiishi, T. H., Huebsch, W. W. & Rothmayer, A. P. 2013 Fluid Mechanics. Wiley.Google Scholar
Nishiyama, K., Okada, J. & Toh, Y. 2007 Antennal and locomotor responses to attractive and aversive odors in the searching cockroach. J. Compar. Physiol. A 193 (9), 963971.CrossRefGoogle ScholarPubMed
Palmer, M. R., Nepf, H. M., Pettersson, T. J. R. & Ackerman, J. D. 2004 Observations of particle capture on a cylindrical collector: implications for particle accumulation and removal in aquatic systems. Limnol. Oceanogr. 49 (1), 7685.CrossRefGoogle Scholar
Rau, P. & Rau, N. M. 1929 The Sex Attraction and Rhythmic Periodicity in Giant Saturnid Moths. Academy of Science.Google Scholar
Rodes, C., Smith, T., Crouse, R. & Ramachandran, G. 1990 Measurements of the size distribution of aerosols produced by ultrasonic humidification. Aerosol Sci. Technol. 13 (2), 220229.CrossRefGoogle Scholar
Sane, S. P., Dieudonné, A., Willis, M. A. & Daniel, T. L. 2007 Antennal mechanosensors mediate flight control in moths. Science 315 (5813), 863866.CrossRefGoogle ScholarPubMed
Sane, S. P. & Jacobson, N. P. 2006 Induced airflow in flying insects. II. Measurement of induced flow. J. Expl Biol. 209 (1), 4356.CrossRefGoogle ScholarPubMed
Schneider, D. 1964 Insect antennae. Annu. Rev. Entomol. 9 (1), 103122.CrossRefGoogle Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. 2012 NIH image to imageJ: 25 years of image analysis. Nat. Meth. 9 (7), 671675.CrossRefGoogle ScholarPubMed
Schneider, R. W. S., Price, B. A. & Moore, P. A. 1998 Antennal morphology as a physical filter of olfaction: temporal tuning of the antennae of the honeybee, Apis mellifera. J. Insect Physiol. 44 (7–8), 677684.CrossRefGoogle Scholar
Seinfeld, P. 2006 Atmospheric chemistry and physics. In Neurobiology of Chemical Communication (ed. Mucignat-Caretta, C.), pp. 99138. CRC Press.Google Scholar
Spencer, T. L., Lavrik, N. & Hu, D. L. 2017 Synthetic moth antennae fabricated as preconcentrator for odor collection. In 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), pp. 13. IEEE.Google Scholar
Spielman, L. A. 1977 Particle capture from low-speed laminar flows. Annu. Rev. Fluid Mech. 9 (1), 297319.CrossRefGoogle Scholar
Stechkina, I. B., Kirsch, A. A. & Fuchs, N. A. 1969 Studies on fibrous aerosol filters – IV calculation of aerosol deposition in model filters in the range of maximum penetration. Ann. Occupational Hygiene 12 (1), 18.Google ScholarPubMed
Symonds, M. R. E., Johnson, T. L. & Elgar, M. A. 2012 Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths. Ecol. Evol. 2 (1), 227246.CrossRefGoogle ScholarPubMed
Vogel, S. 1983 How much air passes through a silkmoth’s antenna? J. Insect Physiol. 29 (7), 597602.CrossRefGoogle Scholar
Waldrop, L. D., He, Y. & Khatri, S. 2018 What can computational modeling tell us about the diversity of odor-capture structures in the Pancrustacea? J. Chem. Ecol. 44 (12), 10841100.CrossRefGoogle ScholarPubMed
Wang, Q., Shang, Y., Hilton, D. S., Inthavong, K., Zhang, D. & Elgar, M. A. 2018 Antennal scales improve signal detection efficiency in moths. Proc. R. Soc. Lond. B 285 (1874), 20172832.Google ScholarPubMed
Wessel, R. A. & Righi, J. 1988 Generalized correlations for inertial impaction of particles on a circular cylinder. Aerosol Sci. Technol. 9 (1), 2960.CrossRefGoogle Scholar
Wong, J. B., Ranz, W. E. & Johnstone, H. F. 1955 Inertial impaction of aerosol particles on cylinders. J. Appl. Phys. 26 (2), 244249.CrossRefGoogle Scholar
Wyatt, T. D. 2009 Fifty years of pheromones. Nature 457 (7227), 262263.CrossRefGoogle ScholarPubMed
Zhang, X., Zhang, W., Yi, M., Wang, Y., Wang, P., Xu, J., Niu, F. & Lin, F. 2018 High-performance inertial impaction filters for particulate matter removal. Sci. Rep. 8 (1), 4757.CrossRefGoogle ScholarPubMed
Zhu, C., Lin, C.-H. & Cheung, C. S. 2000 Inertial impaction-dominated fibrous filtration with rectangular or cylindrical fibers. Powder Technol. 112 (1–2), 149162.CrossRefGoogle Scholar
Zilch, L. W., Maze, J. T., Smith, J. W., Ewing, G. E. & Jarrold, M. F. 2008 Charge separation in the aerodynamic breakup of micrometer-sized water droplets. J. Phys. Chem. A 112 (51), 1335213363.CrossRefGoogle ScholarPubMed
Supplementary material: File

Spencer et al. supplementary material

Spencer et al. supplementary material

Download Spencer et al. supplementary material(File)
File 3.1 MB