Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-01T03:49:19.577Z Has data issue: false hasContentIssue false

Modelling of material pitting from cavitation bubble collapse

Published online by Cambridge University Press:  14 August 2014

Chao-Tsung Hsiao*
Affiliation:
Dynaflow, Inc., 10621-J Iron Bridge Road, Jessup, MD 20794, USA
A. Jayaprakash
Affiliation:
Dynaflow, Inc., 10621-J Iron Bridge Road, Jessup, MD 20794, USA
A. Kapahi
Affiliation:
Dynaflow, Inc., 10621-J Iron Bridge Road, Jessup, MD 20794, USA
J.-K. Choi
Affiliation:
Dynaflow, Inc., 10621-J Iron Bridge Road, Jessup, MD 20794, USA
Georges L. Chahine
Affiliation:
Dynaflow, Inc., 10621-J Iron Bridge Road, Jessup, MD 20794, USA
*
Email address for correspondence: [email protected]

Abstract

Material pitting from cavitation bubble collapse is investigated numerically including two-way fluid–structure interaction (FSI). A hybrid numerical approach which links an incompressible boundary element method (BEM) solver and a compressible finite difference flow solver is applied to capture non-spherical bubble dynamics efficiently and accurately. The flow codes solve the fluid dynamics while intimately coupling the solution with a finite element structure code to enable simulation of the full FSI. During bubble collapse high impulsive pressures result from the impact of the bubble re-entrant jet on the material surface and from the collapse of the remaining bubble ring. A pit forms on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress. The results depend on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall, and the pressure driving the bubble collapse. The effects of these parameters on the re-entrant jet, the following bubble ring collapse pressure, and the generated material pit characteristics are investigated.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amirkhizi, A. V., Isaacs, J., McGee, J. & Nemat-Nasser, S. 2006 An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects. Phil. Mag. 86 (36), 58475866.CrossRefGoogle Scholar
Anderson, J. D. 1990 Modern Compressible Flow: with Historical Perspective, vol. 12. McGraw-Hill.Google Scholar
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19, 99124.CrossRefGoogle Scholar
Brennen, C. E. 1995 Cavitation and Bubble Dynamics. Oxford University Press.CrossRefGoogle Scholar
Chahine, G. L. 1982 Experimental and asymptotic study of non-spherical bubble collapse. Appl. Sci. Res. 38, 187197.CrossRefGoogle Scholar
Chahine, G. L. 1993 Cavitation dynamics at microscale level. J. Heart Valve Dis. 3, 102116.Google Scholar
Chahine, G. L. 2014 Modeling of cavitation dynamics and interaction with material. In Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction (ed. Kim, K. H., Chahine, G. L., Franc, J. P. & Karimi, A.), chap. 6. Springer.Google Scholar
Chahine, G. L., Annasami, R., Hsiao, C.-T. & Harris, G. 2006 Scaling rules for the prediction on UNDEX bubble re-entering jet parameters. SAVIAC Crit. Technol. Shock Vib. 4 (1), 112.Google Scholar
Chahine, G. L., Duraiswami, R. & Kalumuck, K. M.1996 Boundary element method for calculating 2-D and 3-D underwater explosion bubble loading on nearby structures. Report NSWCDD/TR-93/46. Naval Surface Warfare Center, Weapons Research and Technology Department, September (limited distribution).Google Scholar
Chahine, G. L. & Kalumuck, K. M. 1998a BEM software for free surface flow simulation including fluid structure interaction effects. Intl J. Comput. Appl. Technol. 11 (3/4/5), 177199.Google Scholar
Chahine, G. L. & Kalumuck, K. M. 1998b The influence of structural deformation on water jet impact loading. J. Fluids Struct. 12 (1), 103121.CrossRefGoogle Scholar
Chahine, G. L. & Perdue, T. O. 1990 Simulation of the three-dimensional behavior of an unsteady large bubble near a structure. In 3rd International Colloquium on Drops and Bubbles, Monterey, CA, AIP Conf. Proc., vol. 197, p. 188.Google Scholar
Chahine, G. L. & Shen, Y. T. 1986 Bubble dynamics and cavitation inception in cavitation susceptibility meter. Trans. ASME: J. Fluids Engng 108, 444452.Google Scholar
Colella, P. 1985 A direct Eulerian MUSCL scheme for gas dynamics. SIAM J. Sci. Stat. Comput. 6 (1), 104117.CrossRefGoogle Scholar
Crum, L. A. 1979 Surface oscillations and jet development in pulsating bubbles. J. Phys. Paris 40 (supplément au N. 11), c8-285 colloque c8.CrossRefGoogle Scholar
Duncan, J. H., Milligan, C. D. & Zhange, S. 1991 On the interaction of a collapsing cavity and a compilant wall. J. Fluid Mech. 226, 401423.CrossRefGoogle Scholar
Duncan, J. H., Milligan, C. D. & Zhang, S. 1996 On the interaction between a bubble and submerged compliant structure. J. Sound Vib. 197, 1744.CrossRefGoogle Scholar
Harris, G. S., Illamni, R., Lewis, W., Rye, K. & Chahine, G. L.2009 Underwater explosion bubble phenomena tests near a simulated dam structure. IHTR 10-3055, November 1. Naval Surface Warfare Center – Indian Head Division.Google Scholar
Hsiao, C.-T. & Chahine, G. L. 2013a Development of compressible–incompressible link to efficiently model bubble dynamics near floating body. Adv. Bound. Element Meshless Tech. XIV, 141152.Google Scholar
Hsiao, C.-T. & Chahine, G. L. 2013b Breakup of finite thickness viscous shell microbubbles by ultrasound: a simplified zero thickness shell model. J. Acoust. Soc. Am. 133 (4), 18971910.CrossRefGoogle ScholarPubMed
Jayaprakash, A., Hsiao, C.-T. & Chahine, G. L. 2012 Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall. Trans. ASME: J. Fluids Engng 134, 031301.Google Scholar
Jones, I. R. & Edwards, D. H. 1960 An experimental study of the forces generated by the collapse of transient cavities in water. J. Fluid Mech. 7, 596609.CrossRefGoogle Scholar
Kalumuck, K. M., Chahine, G. L. & Hsiao, C.-T. 2003 Simulation of surface piercing body coupled response to underwater bubble dynamics utilizing 3DynaFS©, a three-dimensional BEM code. Comput. Mech. 32, 319326.Google Scholar
Kalumuck, K. M., Duraiswami, R. & Chahine, G. L. 1995 Bubble dynamics fluid–structure interaction simulation on coupling fluid BEM and structural FEM codes. J. Fluids Struct. 9, 861883.CrossRefGoogle Scholar
Kapahi, A., Hsiao, C.-T. & Chahine, G. L. 2014 A multi-material flow solver for high speed compressible flow applications. Comput. Fluids (in press).Google Scholar
Key, S. W.1974 HONDO-a finite element computer program for the large deformation dynamics response of axisymmetric solids. Report 74-0039. Sandia National Laboratories, Albuquerque, NM.Google Scholar
Kim, K. H., Chahine, G. L., Franc, J. P. & Karimi, A. 2014 Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction. Springer.CrossRefGoogle Scholar
Madadi-Kandjani, E. & Xiong, Q. 2014 Validity of the spring-backed membrane model for bubble-wall interactions with compliant walls. Comput. Fluids 96, 116121.CrossRefGoogle Scholar
Naude, C. F. & Ellis, A. T. 1961 On the mechanism of cavitation damage by non-hemispherical cavities collapsing in contact with a solid boundary. Trans. ASME: J. Basic Engng 83, 648656.CrossRefGoogle Scholar
Philipp, A. & Lauterborn, W. 1998 Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75116.CrossRefGoogle Scholar
Plesset, M. S. & Chapman, R. B. 1971 Collapse of an initially spherical vapour cavity in the neighborhood of a solid boundary. J. Fluid Mech. 47 (2), 283290.CrossRefGoogle Scholar
Rayleigh, Lord 1917 On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34, 9498.CrossRefGoogle Scholar
Vogel, A. & Lauterborn, W. 1988 Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 84, 719731.CrossRefGoogle Scholar
Wang, Q. X. 2013 Underwater explosion bubble dynamics in a compressible liquid. Phys. Fluids 25, 072104.CrossRefGoogle Scholar
Wang, Q. X. & Blake, J. R. 2010 Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J. Fluid Mech. 659, 191224.CrossRefGoogle Scholar
Wang, Q. X. & Blake, J. R. 2011 Non-spherical bubble dynamics in a compressible liquid. Part 2. Acoustic standing wave. J. Fluid Mech. 679, 559581.CrossRefGoogle Scholar
Wardlaw, A. B. Jr. & Luton, A. J. 2000 Fluid structure interaction for close-in explosion. Shock Vib. 7, 265275.CrossRefGoogle Scholar
Wardlaw, A. B., Luton, J. A., Renzi, J. R., Kiddy, K. C. & McKeown, R. M.2003 The Gemini Euler solver for the coupled simulation of underwater explosions. Tech. Rep. 2500, November. Naval Surface Warfare Center – Indian Head Division.Google Scholar
Whirley, R. G. & Engelmann, B. E.1993 DYNA3D: a nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics – user manual. Rep. UCRL-MA-107254 Rev. 1. Lawrence Livermore National Laboratory, November.CrossRefGoogle Scholar
Zel’Dovich, Y. B. & Raizer, Y. P. 2002 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover.Google Scholar
Zhang, S., Duncan, J. H. & Chahine, G. L. 1993 The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 257, 147181.CrossRefGoogle Scholar