Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-03T14:32:22.988Z Has data issue: false hasContentIssue false

A model for confined vortex rings with elliptical-core vorticity distribution

Published online by Cambridge University Press:  07 December 2016

Ionut Danaila
Affiliation:
Laboratoire de Mathématiques Raphaël Salem, Université de Rouen Normandie, F-76801 Saint-Étienne-du-Rouvray, France
Felix Kaplanski
Affiliation:
Tallinn University of Technology, Ehitajate tee 5, Tallinn 12616, Estonia Sir Harry Ricardo Laboratories, Advanced Engineering Centre, School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, UK
Sergei S. Sazhin*
Affiliation:
Sir Harry Ricardo Laboratories, Advanced Engineering Centre, School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, UK
*
Email address for correspondence: [email protected]

Abstract

We present a new model for an axisymmetric vortex ring confined in a tube. The model takes into account the elliptical (elongated) shape of the vortex ring core and thus extends our previous model (Danaila et al. J. Fluid Mech., vol. 774, 2015, pp. 267–297) derived for vortex rings with quasi-circular cores. The new model offers a more accurate description of the deformation of the vortex ring core, induced by the lateral wall, and a better approximation of the translational velocity of the vortex ring, compared with the previous model. The main ingredients of the model are the following: the description of the vorticity distribution in the vortex ring is based on the previous model of unconfined elliptical-core vortex rings (Kaplanski et al. Phys. Fluids, vol. 24, 2012, 033101); Brasseur’s approach (Brasseur, NASA Tech. Rep. JIAA TR-26, 1979) is then applied to derive a wall-induced correction for the Stokes streamfunction of the confined vortex ring flow. We derive closed formulae for the flow streamfunction and vorticity distributions. An asymptotic expression for the long-time evolution of the drift velocity of the vortex ring as a function of the ellipticity parameter is also derived. The predictions of the model are shown to be in agreement with direct numerical simulations of confined vortex rings generated by a piston–cylinder mechanism. The predictions of the model support the recently suggested heuristic relation (Krieg & Mohseni Trans. ASME J. Fluids Engng, vol. 135, 2013, 124501) between the energy and circulation of vortex rings with converging radial velocity. A new procedure for fitting experimental and numerical data with the predictions of the model is described. This opens the way for applying the model to realistic confined vortex rings in various applications including those in internal combustion engines.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions. Dover.Google Scholar
Batchelor, G. K. 1988 An Introduction to Fluid Dynamics, 7th edn. Cambridge University Press.Google Scholar
Begg, S., Kaplanski, F., Sazhin, S., Hindle, M. & Heikal, M. 2009 Vortex ring-like structures in gasoline fuel sprays under cold-start conditions. Intl J. Engine Res. 10 (4), 195214.CrossRefGoogle Scholar
Brasseur, J. G.1979 Kinematics and dynamics of vortex rings in a tube. NASA Tech. Rep. JIAA TR-26.Google Scholar
Brasseur, J. G.1986 Evolution characteristics of vortex rings over a wide range of Reynolds numbers. Proceedings of 4th AIAA/ASME Fluid Mechanics, Plasma Dynamics and Lasers Conference, May 12–14 1986, Atlanta, GA. AIAA Paper 86-1097.Google Scholar
Candon, S. & Marshall, J. 2012 Vortex ring deformation, capture, and entrainment by a columnar vortex. Phys. Fluids 24, 093604.CrossRefGoogle Scholar
Cater, J. E., Soria, J. & Lim, T. T. 2004 The interaction of the piston vortex with a piston-generated vortex ring. J. Fluid Mech. 499, 327343.Google Scholar
Dabiri, J. O. & Gharib, M. 2005 Starting flow through nozzles with temporally variable exit diameter. J. Fluid Mech. 538, 111136.Google Scholar
Danaila, I. & Helie, J. 2008 Numerical simulation of the postformation evolution of a laminar vortex ring. Phys. Fluids 20, 073602.CrossRefGoogle Scholar
Danaila, I., Kaplanski, F. & Sazhin, S. 2015 Modelling of confined vortex rings. J. Fluid Mech. 774, 267297.Google Scholar
Danaila, I. & Protas, B. 2015 Optimal reconstruction of inviscid vortices. Proc. R. Soc. Lond. A 471, 20150323.Google Scholar
Danaila, I., Vadean, C. & Danaila, S. 2009 Specified discharge velocity models for the numerical simulation of laminar vortex rings. Theor. Comput. Fluid Dyn. 23, 317332.Google Scholar
Fukumoto, Y. 2010 Global evolution of viscous vortex rings. Theor. Comput. Fluid Dyn. 24, 335347.Google Scholar
Fukumoto, Y. & Moffatt, H. K. 2000 Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity. J. Fluid Mech. 417, 145.Google Scholar
Fukumoto, Y. & Moffatt, H. K. 2008 Kinematic variational principle for motion of vortex rings. Physica D 237, 22102217.CrossRefGoogle Scholar
Gharib, M., Rambod, E., Kheradvar, A., Sahn, D. J. & Dabiri, J. O. 2006 Optimal vortex formation as an index of cardiac health. Proc. Natl Acad. Sci. 103, 63056308.Google Scholar
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.CrossRefGoogle Scholar
Hecht, F. 2012 New developments in FreeFem++. J. Numer. Maths 20, 251266.Google Scholar
Hecht, F.2016 FreeFem++ manual, version 3.49. www.freefem.org.Google Scholar
Helmholtz, H. 1867 On integrals of the hydrodynamical equations, which express vortex-motion. Phil. Mag. (4) 33, 485510.Google Scholar
Heywood, J. B. 1988 Internal Combustion Engines Fundamentals. McGraw-Hill.Google Scholar
Kaplanski, F., Sazhin, S. S., Fukumoto, Y., Begg, S. & Heikal, M. 2009 A generalized vortex ring model. J. Fluid Mech. 622, 233258.Google Scholar
Kaplanski, F. B., Fukumoto, Y. & Rudi, Y. A. 2012 Reynolds-number effect on vortex ring evolution in a viscous fluid. Phys. Fluids 24, 033101.Google Scholar
Kaplanski, F. B. & Rudi, Y. A. 1999 Dynamics of a viscous vortex ring. Intl J. Fluid Mech. Res. 26, 618630.Google Scholar
Kaplanski, F. B. & Rudi, Y. A. 2005 A model for the formation of ‘optimal’ vortex ring taking into account viscosity. Phys. Fluids 17, 087101087107.Google Scholar
Krieg, M. & Mohseni, K. 2013 On the approximation of the translational velocity of vortex rings. Trans. ASME J. Fluids Engng 135, 124501.Google Scholar
Krueger, S. & Gharib, M. 2003 The significance of vortex ring formation on the impulse and thrust of a starting jet. Phys. Fluids 15, 12711281.Google Scholar
Lamb, H. 1932 Hydrodynamics. Dover.Google Scholar
Lim, T. T. & Nickels, T. B. 1995 Vortex rings. In Vortices in Fluid Flows (ed. Green, S. I.), p. 95. Kluwer.Google Scholar
Mathematica2007 Version 6.0.0. Wolfram Research. http://functions.wolfram.com.Google Scholar
Norbury, J. 1973 A family of steady vortex rings. J. Fluid Mech. 57, 417431.Google Scholar
Rott, N. & Cantwell, B. 1993 Vortex drift. I: dynamic interpretation. Phys. Fluids 5, 14431450.CrossRefGoogle Scholar
Saffman, P. G. 1970 The velocity of viscous vortex rings. Stud. Appl. Maths 49, 371.Google Scholar
Sazhin, S. S. 2014 Droplets and Sprays. Springer.Google Scholar
Shariff, K. & Leonard, A. 1992 Vortex rings. Annu. Rev. Fluid Mech. 24, 235279.CrossRefGoogle Scholar
Stewart, K., Niebel, C., Jung, S. & Vlachos, P. 2012 The decay of confined vortex rings. Exp. Fluids 53, 163171.Google Scholar
Wächter, A.2002 An interior point algorithm for large-scale nonlinear optimization with applications in process engineering. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA.Google Scholar
Wächter, A. & Biegler, L. T. 2006 On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 2557.CrossRefGoogle Scholar
Weigand, A. & Gharib, M. 1997 On the evolution of laminar vortex rings. Exp. Fluids 22, 447457.Google Scholar
Zhang, Y. & Danaila, I. 2012 A finite element BFGS algorithm for the reconstruction of the flow field generated by vortex rings. J. Numer. Maths 20, 325340.Google Scholar
Zhao, W., Steven, H. F. & Mongeau, L. G. 2000 Effects of trailing jet instability on vortex ring formation. Phys. Fluids 12, 589596.Google Scholar