Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-31T23:34:40.764Z Has data issue: false hasContentIssue false

Mobility of an axisymmetric particle near an elastic interface

Published online by Cambridge University Press:  07 December 2016

Abdallah Daddi-Moussa-Ider*
Affiliation:
Biofluid Simulation and Modeling, Fachbereich Physik, Universität Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany
Maciej Lisicki
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Rd, Cambridge CB3 0WA, UK Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
Stephan Gekle
Affiliation:
Biofluid Simulation and Modeling, Fachbereich Physik, Universität Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany
*
Email address for correspondence: [email protected]

Abstract

Using a fully analytical theory, we compute the leading-order corrections to the translational, rotational and translation–rotation coupling mobilities of an arbitrary axisymmetric particle immersed in a Newtonian fluid moving near an elastic cell membrane that exhibits resistance towards stretching and bending. The frequency-dependent mobility corrections are expressed as general relations involving separately the particle’s shape-dependent bulk mobility and the shape-independent parameters such as the membrane–particle distance, the particle orientation and the characteristic frequencies associated with shearing and bending of the membrane. This makes the equations applicable to an arbitrary-shaped axisymmetric particle provided that its bulk mobilities are known, either analytically or numerically. For a spheroidal particle, these general relations reduce to simple expressions in terms of the particle’s eccentricity. We find that the corrections to the translation–rotation coupling mobility are primarily determined by bending, whereas shearing manifests itself in a more pronounced way in the rotational mobility. We demonstrate the validity of the analytical approximations by a detailed comparison with boundary integral simulations of a truly extended spheroidal particle. They are found to be in a good agreement over the whole range of applied frequencies.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions, vol. 1. Dover.Google Scholar
Agudo-Canalejo, J. & Lipowsky, R. 2015 Critical particle sizes for the engulfment of nanoparticles by membranes and vesicles with bilayer asymmetry. ACS Nano 9 (4), 37043720.CrossRefGoogle ScholarPubMed
Al-Obaidi, H. & Florence, A. T. 2015 Nanoparticle delivery and particle diffusion in confined and complex environments. J. Drug Deliv. Sci. Technol. 30, 266277.CrossRefGoogle Scholar
Batchelor, G. K. 1970 Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44 (03), 419440.CrossRefGoogle Scholar
Bhaduri, B., Neild, A. & Ng, T. W. 2008 Directional Brownian diffusion dynamics with variable magnitudes. Appl. Phys. Lett. 92 (8), 084105.Google Scholar
Bickel, T. 2006 Brownian motion near a liquid-like membrane. Eur. Phys. J. E 20, 379385.CrossRefGoogle Scholar
Bickel, T. 2007 Hindered mobility of a particle near a soft interface. Phys. Rev. E 75, 041403.Google Scholar
Bickel, T. 2014 Probing nanoscale deformations of a fluctuating interface. Europhys. Lett. 106 (1), 16004.CrossRefGoogle Scholar
Blake, J. R. 1971 A note on the image system for a Stokeslet in a no-slip boundary. Math. Proc. Camb. Phil. Soc. 70 (02), 303310.CrossRefGoogle Scholar
Blake, J. R. & Fulford, G. R. 1981 Force distribution on a slender body close to an interface. Bull. Austral. Math. Soc. 24 (01), 2736.Google Scholar
Bławzdziewicz, J., Ekiel-Jeżewska, M. L. & Wajnryb, E. 2010 Motion of a spherical particle near a planar fluid-fluid interface: the effect of surface incompressibility. J. Chem. Phys. 133 (11), 114702.Google Scholar
Boatwright, T., Dennin, M., Shlomovitz, R., Evans, A. A. & Levine, A. J. 2014 Probing interfacial dynamics and mechanics using submerged particle microrheology. II. Experiment. Phys. Fluids 26 (7), 071904.Google Scholar
Bracewell, R. 1999 The Fourier Transform and its Applications. McGraw-Hill.Google Scholar
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16, 242251.Google Scholar
Cervantes-Martínez, A. E., Ramírez-Saito, A., Armenta-Calderón, R., Ojeda-López, M. A. & Arauz-Lara, J. L. 2011 Colloidal diffusion inside a spherical cell. Phys. Rev. E 83 (3), 030402–4.Google Scholar
Cheong, F. C. & Grier, D. G. 2010 Rotational and translational diffusion of copper oxide nanorods measured with holographic video microscopy. Opt. Express 18 (7), 65556562.Google Scholar
Chwang, A. T. & Wu, T. Y.-T. 1975 Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67 (04), 787815.Google Scholar
Cichocki, B. & Jones, R. B. 1998 Image representation of a spherical particle near a hard wall. Physica A 258 (3), 273302.Google Scholar
Cichocki, B., Jones, R. B., Kutteh, R. & Wajnryb, E. 2000 Friction and mobility for colloidal spheres in Stokes flow near a boundary: The multipole method and applications. J. Chem. Phys. 112 (5), 25482561.Google Scholar
Colin, R., Yan, M., Chevry, L., Berret, J.-F. & Abou, B. 2012 3d rotational diffusion of micrometric wires using 2d video microscopy. Europhys. Lett. 97 (3), 30008.CrossRefGoogle Scholar
Conn, A. R., Gould, N. I. M. & Toint, Ph. L. 2000 Trust Region Methods, vol. 1. SIAM.Google Scholar
Daddi-Moussa-Ider, A. & Gekle, S. 2016 Hydrodynamic interaction between particles near elastic interfaces. J. Chem. Phys. 145 (1), 014905.Google Scholar
Daddi-Moussa-Ider, A., Guckenberger, A. & Gekle, S. 2016a Long-lived anomalous thermal diffusion induced by elastic cell membranes on nearby particles. Phys. Rev. E 93, 012612.Google Scholar
Daddi-Moussa-Ider, A., Guckenberger, A. & Gekle, S. 2016b Particle mobility between two planar elastic membranes: Brownian motion and membrane deformation. Phys. Fluids 28 (7), 071903.Google Scholar
De Corato, M., Greco, F., Davino, G. & Maffettone, P. L. 2015 Hydrodynamics and Brownian motions of a spheroid near a rigid wall. J. Chem. Phys. 142 (19), 194901.Google Scholar
De Mestre, N. J. & Russel, W. B. 1975 Low-Reynolds-number translation of a slender cylinder near a plane wall. J. Engng Maths 9 (2), 8191.Google Scholar
Dettmer, S. L., Pagliara, S., Misiunas, K. & Keyser, U. F. 2014 Anisotropic diffusion of spherical particles in closely confining microchannels. Phys. Rev. E 89 (6), 062305.Google Scholar
Doherty, G. J. & McMahon, H. T. 2009 Mechanisms of endocytosis. Annu. Rev. Biochem. 78 (1), 857902.CrossRefGoogle ScholarPubMed
Dufresne, E. R., Altman, D. & Grier, D. G. 2001 Brownian dynamics of a sphere between parallel walls. Europhys. Lett. 53 (2), 264270.Google Scholar
Duggal, R. T & Pasquali, M. 2006 Dynamics of individual single-walled carbon nanotubes in water by real-time visualization. Phys. Rev. Lett. 96 (24), 246104.Google Scholar
Eral, H. B., Oh, J. M., van den Ende, D., Mugele, F. & Duits, M. H. G. 2010 Anisotropic and hindered diffusion of colloidal particles in a closed cylinder. Langmuir 26 (22), 1672216729.CrossRefGoogle Scholar
Faucheux, L. P. & Libchaber, A. J. 1994 Confined Brownian motion. Phys. Rev. E 49, 51585163.Google Scholar
Felderhof, B. U. 2006a Effect of surface elasticity on the motion of a droplet in a viscous fluid. J. Chem. Phys. 125 (12), 124904.Google Scholar
Felderhof, B. U. 2006b Effect of surface tension and surface elasticity of a fluid-fluid interface on the motion of a particle immersed near the interface. J. Chem. Phys. 125 (14), 144718.Google Scholar
Felderhof, B. U. 2012 Hydrodynamic force on a particle oscillating in a viscous fluid near a wall with dynamic partial-slip boundary condition. Phys. Rev. E 85, 046303.Google Scholar
Felderhof, B. U. 2013 Velocity relaxation of an ellipsoid immersed in a viscous incompressible fluid. Phys. Fluids 25 (1), 013101.Google Scholar
Franosch, T. & Jeney, S. 2009 Persistent correlation of constrained colloidal motion. Phys. Rev. E 79 (3), 031402.CrossRefGoogle ScholarPubMed
Freund, J. B. 2014 Numerical simulation of flowing blood cells. Annu. Rev. Fluid Mech. 46 (1), 6795.Google Scholar
Goldman, A. J., Cox, R. G. & Brenner, H. 1967a Slow viscous motion of a sphere parallel to a plane wall- I Motion through a quiescent fluid. Chem. Engng Sci. 22, 637651.Google Scholar
Goldman, A. J., Cox, R. G. & Brenner, H. 1967b Slow viscous motion of a sphere parallel to a plane wall-II Couette flow. Chem. Engng Sci. 22, 653660.Google Scholar
Guckenberger, A., Schraml, M. P., Chen, P. G., Leonetti, M. & Gekle, S. 2016 On the bending algorithms for soft objects in flows. Comput. Phys. Commun. 207, 123.Google Scholar
Han, Y., Alsayed, A., Nobili, M. & Yodh, A. G. 2009 Quasi-two-dimensional diffusion of single ellipsoids: Aspect ratio and confinement effects. Phys. Rev. E 80, 011403.Google Scholar
Han, Y., Alsayed, A. M., Nobili, M., Zhang, J., Lubensky, T. C. & Yodh, A. G. 2006 Brownian motion of an ellipsoid. Science 314 (5799), 626630.Google Scholar
Happel, J. & Brenner, H. 2012 Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer Science & Business Media.Google Scholar
Helfrich, W. 1973 Elastic properties of lipid bilayers – theory and possible experiments. Z. Naturf. C. 28, 693.CrossRefGoogle ScholarPubMed
Holmqvist, P., Dhont, J. K. G. & Lang, P. R. 2007 Colloidal dynamics near a wall studied by evanescent wave light scattering: experimental and theoretical improvements and methodological limitations. J. Chem. Phys. 126 (4), 044707.CrossRefGoogle Scholar
Hsu, R. & Ganatos, P. 1989 The motion of a rigid body in viscous fluid bounded by a plane wall. J. Fluid Mech. 207, 2972.CrossRefGoogle Scholar
Irmscher, M., de Jong, A. M., Kress, H. & Prins, M. W. J. 2012 Probing the cell membrane by magnetic particle actuation and euler angle tracking. Biophys. J. 102 (3), 698708.Google Scholar
Jünger, F., Kohler, F., Meinel, A., Meyer, T., Nitschke, R., Erhard, B. & Rohrbach, A. 2015 Measuring local viscosities near plasma membranes of living cells with photonic force microscopy. Biophys. J. 109 (5), 869882.Google Scholar
Kim, S. & Karrila, S. J. 2013 Microhydrodynamics: Principles and Selected Applications. Courier Corporation.Google Scholar
Kress, H., Stelzer, E. H. K., Griffiths, G. & Rohrbach, A. 2005 Control of relative radiation pressure in optical traps: application to phagocytic membrane binding studies. Phys. Rev. E 71 (6), 061927.Google Scholar
Lauga, E. & Squires, T. M. 2005 Brownian motion near a partial-slip boundary: A local probe of the no-slip condition. Phys. Fluids 17 (10), 103102.Google Scholar
Lee, S. H., Chadwick, R. S. & Leal, L. G. 1979 Motion of a sphere in the presence of a plane interface. part 1. an approximate solution by generalization of the method of lorentz. J. Fluid Mech. 93, 705726.Google Scholar
Li, G. & Tang, J. X. 2004 Diffusion of actin filaments within a thin layer between two walls. Phys. Rev. E 69 (6), 061921.Google Scholar
Lin, B., Yu, J. & Rice, S. A. 2000 Direct measurements of constrained Brownian motion of an isolated sphere between two walls. Phys. Rev. E 62, 39093919.CrossRefGoogle ScholarPubMed
Lisicki, M.2015 Evanescent wave dynamic light scattering by optically anisotropic brownian particles. PhD thesis, University of Warsaw.Google Scholar
Lisicki, M., Cichocki, B., Dhont, J. K. G. & Lang, P. R. 2012 One-particle correlation function in evanescent wave dynamic light scattering. J. Chem. Phys. 136 (20), 204704.CrossRefGoogle ScholarPubMed
Lisicki, M., Cichocki, B., Rogers, S. A., Dhont, J. K. G. & Lang, P. R. 2014 Translational and rotational near-wall diffusion of spherical colloids studied by evanescent wave scattering. Soft Matt. 10 (24), 43124323.Google Scholar
Lisicki, M., Cichocki, B. & Wajnryb, E. 2016 Near-wall diffusion tensor of an axisymmetric colloidal particle. J. Chem. Phys. 145, 034904.Google Scholar
Liu, J., Wei, T., Zhao, J., Huang, Y., Deng, H., Kumar, A., Wang, C., Liang, Z., Ma, X. & Liang, X.-J. 2016 Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 91, 4456.Google Scholar
Lorentz, H. A. 1907 Ein allgemeiner satz, die bewegung einer reibenden flüssigkeit betreffend, nebst einigen anwendungen desselben. Abh. Theor. Phys. 1, 23.Google Scholar
Meinel, A., Tränkle, B., Römer, W. & Rohrbach, A. 2014 Induced phagocytic particle uptake into a giant unilamellar vesicle. Soft Matt. 10 (20), 36673678.Google Scholar
Michailidou, V. N., Petekidis, G., Swan, J. W. & Brady, J. F. 2009 Dynamics of concentrated hard-sphere colloids near a wall. Phys. Rev. Lett. 102, 068302.Google Scholar
Michailidou, V. N., Swan, J. W., Brady, J. F. & Petekidis, G. 2013 Anisotropic diffusion of concentrated hard-sphere colloids near a hard wall studied by evanescent wave dynamic light scattering. J. Chem. Phys. 139 (16), 164905.Google Scholar
Mitchell, W. H. & Spagnolie, S. E. 2015 Sedimentation of spheroidal bodies near walls in viscous fluids: glancing, reversing, tumbling, and sliding. J. Fluid Mech. 772, 600.Google Scholar
Mukhija, D. & Solomon, M. J. 2007 Translational and rotational dynamics of colloidal rods by direct visualization with confocal microscopy. J. Colloid Interface Sci. 314 (1), 98106.Google Scholar
Naahidi, S., Jafari, M., Edalat, F., Raymond, K., Khademhosseini, A. & Chen, P. 2013 Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release 166 (2), 182194.Google Scholar
Neild, A., Padding, J. T., Yu, L., Bhaduri, B., Briels, W. J. & Ng, T. W. 2010 Translational and rotational coupling in Brownian rods near a solid surface. Phys. Rev. E 82 (4), 041126.Google Scholar
Padding, J. T. & Briels, W. J. 2010 Translational and rotational friction on a colloidal rod near a wall. J. Chem. Phys. 132, 054511.Google Scholar
Perrin, F. 1934 Mouvement brownien d’un ellipsoide – I. Dispersion diélectrique pour des molécules ellipsoidales. J. Phys. Radium 5, 497511.Google Scholar
Perrin, F. 1936 Mouvement brownien d’un ellipsoide – II. Rotation libre et dépolarisation des fluorescences. translation et diffusion de molécules ellipsoidales. J. Phys. Radium 7, 111.Google Scholar
Power, H. & Miranda, G. 1987 Second kind integral equation formulation of Stokes’ flows past a particle of arbitrary shape. SIAM J. Appl. Maths 47 (4), 689698.CrossRefGoogle Scholar
Pozrikidis, C. 2001 Interfacial dynamics for Stokes flow. J. Comput. Phys. 169, 250.Google Scholar
Rogers, S. A., Lisicki, M., Cichocki, B., Dhont, J. K. G. & Lang, P. R. 2012 Rotational diffusion of spherical colloids close to a wall. Phys. Rev. Lett. 109 (9), 098305.Google Scholar
Saintyves, B., Jules, T., Salez, T. & Mahadevan, L. 2016 Self-sustained lift and low friction via soft lubrication. Proc. Natl Acad. Sci. USA 113 (21), 58475849.Google Scholar
Salez, T. & Mahadevan, L. 2015 Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall. J. Fluid Mech. 779, 181196.Google Scholar
Schäffer, E., Nørrelykke, S. F. & Howard, J. 2007 Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers. Langmuir 23 (7), 36543665.Google Scholar
Schiby, D. & Gallily, I. 1980 On the orderly nature of the motion of nonspherical aerosol particles. III. The effect of the particle–wall fluid-dynamic interaction. J. Colloid Interface Sci. 77 (2), 328352.Google Scholar
Shlomovitz, R., Evans, A., Boatwright, T., Dennin, M. & Levine, A. 2013 Measurement of monolayer viscosity using noncontact microrheology. Phys. Rev. Lett. 110 (13), 137802.Google Scholar
Shlomovitz, R., Evans, A. A., Boatwright, T., Dennin, M. & Levine, A. J. 2014 Probing interfacial dynamics and mechanics using submerged particle microrheology. I. Theory. Phys. Fluids 26 (7), 071903.CrossRefGoogle Scholar
Skalak, R., Tozeren, A., Zarda, R. P. & Chien, S. 1973 Strain energy function of red blood cell membranes. Biophys. J. 13 (3), 245264.Google Scholar
Swan, J. W. & Brady, J. F. 2007 Simulation of hydrodynamically interacting particles near a no-slip boundary. Phys. Fluids 19 (11), 113306.CrossRefGoogle Scholar
Tränkle, B., Ruh, D. & Rohrbach, A. 2016 Interaction dynamics of two diffusing particles: contact times and influence of nearby surfaces. Soft Matt. 12 (10), 27292736.Google Scholar
Waigh, T. A. 2016 Advances in the microrheology of complex fluids. Rep. Prog. Phys. 79 (7), 074601.CrossRefGoogle ScholarPubMed
Wang, G. M., Prabhakar, R. & Sevick, E. M. 2009 Hydrodynamic mobility of an optically trapped colloidal particle near fluid-fluid interfaces. Phys. Rev. Lett. 103, 248303.Google Scholar
Wang, W. & Huang, P. 2014 Anisotropic mobility of particles near the interface of two immiscible liquids. Phys. Fluids 26 (9), 092003.Google Scholar
Zhao, H. & Shaqfeh, E. S. G. 2011 Shear-induced platelet margination in a microchannel. Phys. Rev. E 83, 061924.CrossRefGoogle Scholar
Zhao, H., Shaqfeh, E. S. G. & Narsimhan, V. 2012 Shear-induced particle migration and margination in a cellular suspension. Phys. Fluids 24 (1), 011902.Google Scholar
Zheng, Z. & Han, Y. 2010 Self-diffusion in two-dimensional hard ellipsoid suspensions. J. Chem. Phys. 133 (12), 124509.Google Scholar
Zhu, L.2014 Simulation of individual cells in flow. PhD thesis, KTH Royal Institute of Technology in Stockholm.Google Scholar
Supplementary material: File

Daddi-Moussa-Ider supplementary material

Daddi-Moussa-Ider supplementary material 1

Download Daddi-Moussa-Ider supplementary material(File)
File 236.9 KB