Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-17T17:36:31.249Z Has data issue: false hasContentIssue false

Measurements and prediction of fully developed turbulent flow in an equilateral triangular duct

Published online by Cambridge University Press:  12 April 2006

A. M. M. Aly
Affiliation:
Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
A. C. Trupp
Affiliation:
Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
A. D. Gerrard
Affiliation:
Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada

Abstract

Fully developed air-flows through an equilateral triangular duct of 12·7 cm sides were investigated over a Reynolds number range of 53 000 to 107 000. Based on equivalent hydraulic diameter, friction factors were found to be about 6% lower than for pipe flow. Mean axial velocity distributions near the wall were describable by the inner law of the wall (when based on local wall shear stress) but the constants differ slightly from those for pipe flow. As expected, the secondary flow pattern was found to consist of six counter-rotating cells bounded by the corner bisectors. Maximum secondary velocities of about 1 ½% of the bulk velocity were observed. The effects of secondary currents were evident in the cross-sectional distributions of mean axial velocity, wall shear stress and Reynolds stresses, and very prominent in the turbulent kinetic energy distribution. For the flow prediction, the vorticity production terms were expressed by modelling the Reynolds stresses in the plane of the cross-section in terms of gradients in the mean axial velocity and a geometrically calculated turbulence length scale. The experimental and predicted characteristics of the flow are shown to be in good agreement.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bandopadhayay, P. C. & Hinwood, J. B. 1973 J. Fluid Mech. 59, 775.
Brundrett, E. & Baines, W. D. 1964 J. Fluid Mech. 19, 375.
Buleev, N. I. 1963 A.E.R.E. Translation no. 957.
Carajilescov, P. & Todreas, N. E. 1976 J. Heat Transfer, Trans. A.S.M.E. 98, 262.
Carlson, C. W. & Irvine, T. F. 1961 J. Heat Transfer, Trans. A.S.M.E. 83, 441.
Cope, R. C. & Hanks, R. W. 1972 Ind. Engng Chem. Fund. 11, 106.
Cremers, C. J. & Eckert, E. R. G. 1962 J. Appl. Mech. Trans. A.S.M.E. 4, 609.
Deissler, D. G. & Taylor, M. F. 1959 N.A.S.A. Tech. Rep. R-31.
Gerard, R. 1974 Proc. A.S.C.E. 100 (HY3), 425.
Gerrard, A. D. 1976 M.Sc. thesis, University of Manitoba.
Gessner, F. B. & Jones, J. B. 1965 J. Fluid Mech. 23, 689.
Gosman, A. D., Pun, W. M., Runchal, A. K., Spalding, D. B. & Wolfshtein, M. 1969 Heat and Mass Transfer in Recirculating Flows. Academic Press.
Gosman, A. D. & Pun, W. M. 1974 Imperial College Mech. Engng Dept. Rep. HTS/74/3.
Hall, C. & Svenningsson, P. J. 1971 AB Atomenergi Rep. AE-RL-1326.
Hinze, J. O. 1973 Appl. Sci. Res. 28, 453.
Hoagland, L. C. 1960 Ph.D. thesis, M.I.T.
Jayatilleke, C. L. V. 1969 Prog. Heat Mass Transfer 1, 193.
Kacker, S. C. 1973 J. Fluid Mech. 57, 583.
Kjellstrom, B. & Stenback, A. 1970 AB Atomenergi Rep. AE-RV-145.
Kokorev, L. S., Korsun, A. S., Kostyunin, B. N., Petrovichev, V. I. & Struenze, R. L. 1971 Heat Trans.-Soviet Res. 3 (1), 66.
Laufer, J. 1954 N.A.C.A. Rep. no. 1174.
Launder, B. E. & Singham, J. R. 1971 Symp. Internal Flow, Univ. Salford, paper 12.
Launder, B. E. & Ying, W. M. 1972 J. Fluid Mech. 54, 289.
Launder, B. E. & Ying, W. M. 1973 Proc. Inst. Mech. Engrs 187, 455.
Lawn, C. J. 1969 C.E.G.B. Berkeley Nucl. Lab. Rep. RD/B/M 1277.
Leutheusser, H. J. 1963 Proc. A.S.C.E. 89 (HY3), 1.
Liggett, J. A., Chiu, C. & Miao, L. S. 1965 Proc. A.S.C.E. 91 (HY6), 99.
Lyall, H. G. 1971 Symp. Internal Flows, Univ. Salford, paper 33.
Malak, J., Hejna, J. & Schmid, J. 1975 Int. J. Heat Mass Transfer 18, 139.
Nikuradse, J. 1926 V.D.I. Forsch. 281.
Nikuradse, J. 1930 Ingenieur-Archiv 1, 306.
Ower, F. & Pankhurst, R. C. 1966 The Measurement of Air Flow. Pergamon.
Patel, V. C. 1965 J. Fluid Mech. 23, 185.
Rogers, J. T. & Tahir, A. E. E. 1975 A.S.M.E. Paper no. 75-HT-31.
Rowe, D. S., Johnson, B. M. & Knudsen, J. G. 1974 Int. J. Heat Mass Transfer 17, 407.
Tracey, H. J. 1965 Proc. A.S.C.E. 91 (HY6), 9.
Trupp, A. C. & Azad, R. S. 1975 Nucl. Engng Des. 32, no. 1, 47.
Wilson, N. W., Azad, R. S. & Trupp, A. C. 1971 Symp. Internal Flows, Univ. Salford, paper 11.