Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-19T03:46:44.805Z Has data issue: false hasContentIssue false

Measurement of the average velocity of sedimentation in a dilute polydisperse suspension of spheres

Published online by Cambridge University Press:  26 April 2006

D. Bruneau
Affiliation:
Laboratoire d'Aérothermique du CNRS, 4 ter, route des Gardes, F-92190 Meudon, France
R. Anthore
Affiliation:
Laboratoire des Rayons X, URA 808, Faculté des Sciences et Techniques, Université de Rouen, BP 118, 76134 Mont Saint Aignan, France
F. Feuillebois
Affiliation:
Laboratoire d'Aérothermique du CNRS, 4 ter, route des Gardes, F-92190 Meudon, France
X. Auvray
Affiliation:
Laboratoire des Rayons X, URA 808, Faculté des Sciences et Techniques, Université de Rouen, BP 118, 76134 Mont Saint Aignan, France
C. Petipas
Affiliation:
Laboratoire des Rayons X, URA 808, Faculté des Sciences et Techniques, Université de Rouen, BP 118, 76134 Mont Saint Aignan, France

Abstract

An X-ray attenuation technique is used to obtain the local concentration of spherical particles in a polydisperse suspension as a function of vertical position and time. From these experimental data, the average velocity of sedimentation in the homogeneous part of the suspension is derived by considering the variation with time of the total volume of particles located above a given fixed horizontal plane. Measurements have been performed in suspensions of particles which differ from each other in size with a total volume concentration in particles between 0.13% and 2.5%, and also in suspensions of particles which differ from each other both in size and in density, the total volume concentration being 2%. For the first kind of suspension, the experimental hindered settling factor is plotted versus the concentration and a linear regression analysis provides the slope with its 90% confidence limits: Se = −5.3 ± 1.1. This experimental average coefficient of sedimentation is in good agreement with the theoretical average coefficient St = −5.60 obtained from the results of Batchelor & Wen (1982). The second kind of suspension, for which permanent doublets of spheres may theoretically exist, is not in the range of validity of Batchelor & Wen's results. The experimental average coefficient of sedimentation for this case is found to be much larger than the prediction obtained by extrapolating Batchelor & Wen's results out of their range of validity. This increased velocity may be experimental evidence of the existence of permanent doublets.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aïdi, M.: 1986 Sur la sédimentation d'une suspension polydispersée homogène on non. Thèse de docteur-ingénieur, Université de Rouen, France.
Aïdi, M., Feuillebois, F., Lasek, A., Anthore, R., Petipas, C. & Auvray, X., 1989 Mesure de la vitesse de sédimentation par absorption de rayons X. Rev. Phys. Appl. 24, 10771084.Google Scholar
Anselmet, M. C., Anthore, R., Auvray, X., Petipas, C. & Blanc, R., 1989 Etude expérimental de la sédimentation de particules sphériques. C. R. Acad. Sci. Paris 300 (2), 19.Google Scholar
Bacri, J. C., Frenois, C., Hoyos, M., Perzynski, R., Rakotomalala, N. & Salin, D., 1986 Acoustic study of suspension sedimentation. Europhys. Lett. 2 (2), 123128.Google Scholar
Batchelor, G. K.: 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52, 245268.Google Scholar
Batchelor, G. K.: 1982 Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory. J. Fluid Mech. 119, 379408.Google Scholar
Batchelor, G. K. & Wen, C.-S. 1982 Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results. J. Fluid Mech. 124, 495528. Corrigendum: J. Fluid Mech. 137, 1983, 467–469.Google Scholar
Bendat, J. S. & Piersol, A. G., 1971 Random Data: Analysis and Measurement Procedures. Wiley Interscience.
Coster, M. & Chermant, L., 1989 Précis d'analyse d'images. Les Presses du CNRS-Normalisation Francaise de l'Afnor (X11–696, December 1989).Google Scholar
Davis, R. H. & Birdsell, K. H., 1988 Hindered settling of semidilute monodisperse and polydisperse suspensions. AIChEJ. 34, 123129.Google Scholar
Davis, R. H. & Hassen, M. A., 1988 Spreading of the interface at the top of a slightly polydisperse sedimenting suspension. J. Fluid Mech. 196, 107134.Google Scholar
Ganatos, P., Pfeffer, R. & Weinbaum, S., 1980 A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 2. Parallel motion. J. Fluid Mech. 99, 755783.Google Scholar
Geigenmüller, U. & Mazur, P. 1988 Sedimentation of homogeneous suspensions in finite vessels. J. Stat. Phys. 53, 137173.Google Scholar
Ham, J. M. & Homsy, G. M., 1988 Hindered settling and hydrodynamic dispersion in quiescent sedimenting suspensions. Intl J. Multiphase Flow 14, 533546.Google Scholar
Klug, H. P. & Alexander, L. E., 1954 X-ray Diffraction Procedure, p. 92. John Wiley.
Kops-Werkhoven, M. M. & Fijnaut, H. M. 1981 Dynamic light scattering and sedimentation experiments on silica dispersions at finite concentrations. J. Chem. Phys. 74, 1618.Google Scholar
Lorentz, H. A.: 1897 A general theorem concerning the motion of a viscous fluid and a few consequences derived from it. Verhand. Kon. Akad. Wet. Amst. 5, 168.Google Scholar
Lorentz, H. A.: 1907 Abh. über theor. Phys. (Leipzig) 1, 23.
Mirza, S. & Richardson, J. F., 1979 Sedimentation of suspensions of particles of two or more sizes. Chem. Eng. Sci. 34, 447454.Google Scholar
Stokes, G. G.: 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8.Google Scholar
Vasseur, P. & Cox, R. G., 1976 The lateral migration of a spherical particle in two-dimensional shear flows. J. Fluid Mech. 78, 385413.Google Scholar
Wacholder, E. & Sather, N. F., 1974 The hydrodynamic interaction of two unequal spheres moving under gravity through quiescent viscous fluid. J. Fluid Mech. 65, 417437.Google Scholar