Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-02T21:41:55.475Z Has data issue: false hasContentIssue false

Localised turbulence in a circular pipe flow with gradual expansion

Published online by Cambridge University Press:  20 April 2015

Kamal Selvam
Affiliation:
Laboratoire Ondes et Milieux Complexes, CNRS & Normandie Université, 53 rue de Prony, 76600 Le Havre, France
Jorge Peixinho*
Affiliation:
Laboratoire Ondes et Milieux Complexes, CNRS & Normandie Université, 53 rue de Prony, 76600 Le Havre, France
Ashley P. Willis
Affiliation:
School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
*
Email address for correspondence: [email protected]

Abstract

We report the results of three-dimensional direct numerical simulations for incompressible viscous fluid in a circular pipe flow with a gradual expansion. At the inlet, a parabolic velocity profile is applied together with a constant finite-amplitude perturbation to represent experimental imperfections. Initially, at low Reynolds number, the solution is steady. As the Reynolds number is increased, the length of the recirculation region near the wall grows linearly. Then, at a critical Reynolds number, a symmetry-breaking bifurcation occurs, where linear growth of asymmetry is observed. Near the point of transition to turbulence, the flow experiences oscillations due to a shear layer instability for a narrow range of Reynolds numbers. At higher Reynolds numbers, the recirculation region breaks into a turbulent state which remains spatially localised and unchanged when the perturbation is removed from the flow. Spatial correlation analysis suggests that the localised turbulence in the gradual expansion possesses a different flow structure from the turbulent puff of uniform pipe flow.

Type
Rapids
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333 (6039), 192196.CrossRefGoogle ScholarPubMed
Bobinski, T., Goujon-Durand, S. & Wesfreid, J. E. 2014 Instabilities in the wake of a circular disk. Phys. Rev. E 89, 053021.CrossRefGoogle ScholarPubMed
Cantwell, C. D., Barkley, D. & Blackburn, H. M. 2010 Transient growth analysis of flow through a sudden expansion in a circular pipe. Phys. Fluids 22 (3), 034101.CrossRefGoogle Scholar
Ehrenstein, U. & Gallaire, F. 2009 Global low-frequency oscillations in a separating boundary-layer flow. J. Fluid Mech. 14, 123133.Google Scholar
Fabre, D., Auguste, F. & Magnaudet, J. 2008 Bifurcations and symmetry breaking in the wake of axisymmetric bodies. Phys. Fluids 20 (5), 051702.CrossRefGoogle Scholar
Fischer, P., Kruse, J., Mullen, J., Tufo, H., Lottes, J. & Kerkemeier, S.2008, nek5000: Open source spectral element CFD solver http://nek5000.mcs.anl.gov.Google Scholar
Hammad, K. J., Ötügen, M. V. & Arik, E. B. 1999 A PIV study of the laminar axisymmetric sudden expansion flow. Exp. Fluids 26 (3), 266272.CrossRefGoogle Scholar
Latornell, D. J. & Pollard, A. 1986 Some observations on the evolution of shear layer instabilities in laminar flow through axisymmetric sudden expansions. Phys. Fluids 29 (9), 28282835.CrossRefGoogle Scholar
Maday, Y., Patera, A. T. & Rønquist, E. M. 1990 An operator integration factor splitting method for time-dependent problems: application to incompressible fluid flow. J. Sci. Comput. 5 (4), 263292.CrossRefGoogle Scholar
Marquet, O., Sipp, D., Chomaz, J.-M. & Jacquin, L. 2008 Amplifier and resonator dynamics of a low-Reynolds-number recirculation bubble in a global framework. J. Fluid Mech. 605, 429443.CrossRefGoogle Scholar
Mullin, T., Seddon, J. R. T., Mantle, M. D. & Sederman, A. J. 2009 Bifurcation phenomena in the flow through a sudden expansion in a circular pipe. Phys. Fluids 21, 014110.CrossRefGoogle Scholar
Peixinho, J. & Besnard, H. 2013 Transition to turbulence in slowly divergent pipe flow. Phys. Fluids 25, 111702.CrossRefGoogle Scholar
Sanmiguel-Rojas, E., Del Pino, C. & Gutiérrez-Montes, C. 2010 Global mode analysis of a pipe flow through a 1:2 axisymmetric sudden expansion. Phys. Fluids 22 (7), 071702.CrossRefGoogle Scholar
Sanmiguel-Rojas, E. & Mullin, T. 2012 Finite-amplitude solutions in flow through a sudden expansion in a circular pipe. J. Fluid Mech. 691, 201213.CrossRefGoogle Scholar
Shimizu, M. & Kida, S. 2009 A driving mechanism of a turbulent puff in pipe flow. Fluid Dyn. Res. 41 (4), 045501.CrossRefGoogle Scholar
Shimizu, M., Manneville, P., Duguet, Y. & Kawahara, G. 2014 Splitting of a turbulent puff in pipe flow. Fluid Dyn. Res. 46 (6), 061403.CrossRefGoogle Scholar
Sibulkin, M. 1962 Transition from turbulent to laminar pipe flow. Phys. Fluids 5 (3), 280284.CrossRefGoogle Scholar
Sreenivasan, K. R. 1982 Laminarescent, relaminarizing and retransitional flows. Acta Mechanica 44 (1–2), 148.CrossRefGoogle Scholar
Sreenivasan, K. R. & Strykowski, P. J. 1983 An instability associated with a sudden expansion in a pipe flow. Phys. Fluids 26 (10), 27662768.CrossRefGoogle Scholar
Willis, A. P. & Kerswell, R. R. 2008 Coherent structures in localized and global pipe turbulence. Phys. Rev. Lett. 100 (124501).CrossRefGoogle ScholarPubMed
Wygnanski, I. J. & Champagne, F. H. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281335.CrossRefGoogle Scholar