Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T06:02:11.882Z Has data issue: false hasContentIssue false

Local origin of the visco-elasticity of a millimetric elementary foam

Published online by Cambridge University Press:  13 July 2021

Adrien Bussonnière
Affiliation:
Université de Rennes, CNRS, IPR (Institut de Physique de Rennes) – UMR 6251, F-35000Rennes, France
Isabelle Cantat*
Affiliation:
Université de Rennes, CNRS, IPR (Institut de Physique de Rennes) – UMR 6251, F-35000Rennes, France
*
Email address for correspondence: [email protected]

Abstract

Liquid foam exhibits surprisingly high viscosity, higher than each of its phases. This dissipation enhancement has been rationalized by invoking either a geometrical confinement of the shear in the liquid phase, or the influence of the interface viscosity. However, a precise localization of the dissipation, and its mechanism, at the bubble scale is still lacking. With this aim, we simultaneously monitored the evolution of the local flow velocity, film thickness and surface tension of a five-film assembly, induced by different controlled deformations. These measurements allow us to build local constitutive relations for this foam elementary building block. We first show that, for our millimetric foam films, the main part of the film has a purely elastic, reversible behaviour, thus ruling out the interface viscosity in explaining the observed dissipation. We then highlight a generic frustration at the menisci, controlling the interface transfer between neighbour films and resulting in the localization of a bulk shear flow close to the menisci. A model accounting for surfactant transport in these small sheared regions is developed. It is in good agreement with the experiment, and demonstrates that most of the dissipation is localized in these domains. The length of these sheared regions, determined by the physico-chemical properties of the solution, sets a transition between a large bubble regime, in which the films are mainly stretched and compressed, and a small bubble regime, in which they are sheared. Finally, we discuss the parameter range where a model of foam viscosity could be built on the basis of these local results.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bérut, A. & Cantat, I. 2019 Marangoni stress induced by rotation frustration in a liquid foam. Soft Matt. 15, 15621570.CrossRefGoogle Scholar
Besson, S. & Debrégeas, G. 2007 Statics and dynamics of adhesion between two soap bubbles. Eur. Phys. J. E 24, 109117.CrossRefGoogle ScholarPubMed
Biance, A.L., Cohen-Addad, S. & Höhler, R. 2009 Topological transition dynamics in a strained bubble cluster. Soft Matt. 5, 46724679.CrossRefGoogle Scholar
Born, M. & Wolf, E. 1999 Principles of Optics. Cambridge University Press.CrossRefGoogle Scholar
Bussonnière, A., Shabalina, E., Ah-Thon, X., Le Fur, M. & Cantat, I. 2020 Dynamical coupling between connected foam films: interface transfer across the menisci. Phys. Rev. Lett. 124 (1), 018001.CrossRefGoogle ScholarPubMed
Buzza, D., Lu, C.-Y. & Cates, M.E. 1995 Linear shear rheology of incompressible foams. J. Phys. II (France) 5, 3752.CrossRefGoogle Scholar
Cantat, I. 2011 Gibbs elasticity effect in foam shear flows: a non quasi-static 2d numerical simulation. Soft Matt. 7, 448455.CrossRefGoogle Scholar
Cantat, I. 2013 Liquid meniscus friction on a wet wall: bubbles, lamellae and foams. Phys. Fluids 25, 031303.CrossRefGoogle Scholar
Cantat, I., Cohen-Addad, S., Elias, F., Graner, F., Höhler, R., Pitois, O., Rouyer, F. & Saint-Jalmes, A. 2013 Foams: Structure and Dynamics. Oxford University Press.CrossRefGoogle Scholar
Champougny, L., Scheid, B., Restagno, F., Vermant, J. & Rio, E. 2015 Surfactant-induced rigidity of interfaces: a unified approach to free and dip-coated films. Soft Matt. 11 (14), 27582770.CrossRefGoogle ScholarPubMed
Chang, C.H. & Franses, E.I. 1992 Modified langmuir - Hinselwood kinetics for dynamic adsorption of surfactants at the air/water interface. Colloids Surf. 69 (2–3), 189201.CrossRefGoogle Scholar
Cohen-Addad, S., Höhler, R. & Khidas, Y. 2004 Origin of the slow linear viscoelastic response of aqueous foams. Phys. Rev. Lett. 93, 028302.CrossRefGoogle ScholarPubMed
Colegate, D.M. & Bain, C.D. 2005 Adsorption kinetics in micellar solutions of nonionic surfactants. Phys. Rev. Lett. 95 (19), 198302.CrossRefGoogle ScholarPubMed
Costa, S. 2012 Rhéologie multiéchelle des mousses liquides. PhD thesis, Université Paris-Est.Google Scholar
Costa, S., Cohen-Addad, S., Salonen, A. & Höhler, R. 2013 a The dissipative rheology of bubble monolayers. Soft Matt. 9 (3), 886895.CrossRefGoogle Scholar
Costa, S., Höhler, R. & Cohen-Addad, S. 2013 b The coupling between foam viscoelasticity and interfacial rheology. Soft Matt. 9, 11001112.CrossRefGoogle Scholar
Couder, Y., Chomaz, J.-M. & Rabaud, M. 1989 On the hydrodynamics of soap films. Phys. D 37, 384405.CrossRefGoogle Scholar
Cuenot, B., Magnaudet, J. & Spennato, B. 1997 The effects of slightly soluble surfactants on the flow around a spherical bubble. J. Fluid Mech. 339, 2553.CrossRefGoogle Scholar
Denkov, N.D., Subramanian, V., Gurovich, D. & Lips, A. 2005 wall slip and viscous dissipation in sheared foams: effect of surface mobility. Colloids Surf. A 263, 129145.CrossRefGoogle Scholar
Denkov, N.D., Tcholakova, S., Golemanov, K., Ananthapadmanabhan, K.P. & Lips, A. 2008 Viscous friction in foams and concentrated emulsions under steady shear. Phys. Rev. Lett. 100, 138301.CrossRefGoogle ScholarPubMed
Denkov, N.D., Tcholakova, S., Golemanov, K., Subramanian, V. & Lips, A. 2006 Foam-wall friction: effect of air volume fraction for tangentially immobile bubble surface. Colloids Surf. A 282, 329347.CrossRefGoogle Scholar
Drenckhan, W., Ritacco, H., Saint-Jalmes, A., Saugey, A., McGuinness, P., Van der Net, A., Langevin, D. & Weaire, D. 2007 Fluid dynamics of rivulet flow between plates. Phys. Fluids 19 (10), 102101.CrossRefGoogle Scholar
Duplatre, G., Ferreira Marques, M.F. & da Graça Miguel, M. 1996 Size of sodium dodecyl sulfate micelles in aqueous solutions as studied by positron annihilation lifetime spectroscopy. J. Phys. Chem. 100 (41), 1660816612.CrossRefGoogle Scholar
Durand, M. & Stone, H.A. 2006 Relaxation time of the topological t1 process in a two-dimensional foam. Phys. Rev. Lett. 97, 226101.CrossRefGoogle Scholar
Edwards, D.A., Brenner, H. & Wasan, D.T. 1991 Interfacial Transport Processes and Rheology. Butterworth–Heinemann.Google Scholar
Elworthy, P.H. & Mysels, K.J. 1966 The surface tension of sodium dodecylsulfate solutions and the phase separation model of micelle formation. J. Colloid Interface Sci. 21 (3), 331347.CrossRefGoogle Scholar
Embley, B. & Grassia, P. 2007 A single sagging Plateau border. Colloids Surf. A Physicochem. Engng Asp. 309 (1–3), 2029.CrossRefGoogle Scholar
Fang, J.P. & Joos, P. 1992 The dynamic surface tension of sds - dodecanol mixtures 2. micellar sds - dodecanol mixtures. Colloids Surf. 65 (2–3), 121129.CrossRefGoogle Scholar
Gopal, A.D. & Durian, D.J. 2003 Relaxing in foam. Phys. Rev. Lett. 91, 188303.CrossRefGoogle ScholarPubMed
Grassia, P., Embley, B. & Oguey, C. 2012 A princen hexagonal foam out of physicochemical equilibrium. J. Rheol. 56 (3), 501526.CrossRefGoogle Scholar
Gros, A., Bussonnière, A., Nath, S. & Cantat, I. 2021 Marginal regeneration in a horizontal film: instability growth law in the non linear regime. Phys. Rev. F 6, 024004.Google Scholar
Khan, S.A. & Armstrong, R.C. 1987 Rheology of foams: II. Effects of polydispersity and liquid viscosity for foams having gas fraction approaching unity. J. Non-Newtonian Fluid Mech. 25 (1), 6192.CrossRefGoogle Scholar
Kralchevsky, P.A., Danov, K.D., Kolev, V.L., Broze, G. & Mehreteab, A. 2003 Effect of nonionic admixtures on the adsorption of ionic surfactants at fluid interfaces. 1. Sodium dodecyl sulfate and dodecanol. Langmuir 19 (12), 50045018.CrossRefGoogle Scholar
Kraynik, A.M. & Hansen, M.G. 1986 Foam and emulsion rheology: a quasi-static model for large deformations of spatially-periodic cells. J. Rheol. 30, 409439.CrossRefGoogle Scholar
Krishan, K., Helal, A., Höhler, R. & Cohen-Addad, S. 2010 Fast relaxations in foam. Phys. Rev. E 82, 011405.CrossRefGoogle ScholarPubMed
Liu, A.J., Ramaswamy, S., Mason, T.G., Gang, H. & Weitz, D.A. 1996 Anomalous viscous loss in emulsions. Phys. Rev. Lett. 76, 3017.CrossRefGoogle Scholar
Lu, J.R., Purcell, I.P., Lee, E.M., Simister, E.A., Thomas, R.K., Rennie, A.R. & Penfold, J. 1995 The composition and structure of sodium dodecyl sulfate-dodecanol mixtures adsorbed at the air-water interface: a neutron reflection study. J. Colloid Interface Sci. 174 (2), 441455.CrossRefGoogle Scholar
Lu, J.R., Thomas, R.K. & Penfold, J. 2000 Surfactant layers at the air/water interface: structure and composition. Adv. Colloid Interface Sci. 84 (1–3), 143304.CrossRefGoogle Scholar
Marze, S., Langevin, D. & Saint-Jalmes, A. 2008 Aqueous foam slip and shear regimes determined by rheometry and multiple light scattering. J. Rheol. 52, 10911111.CrossRefGoogle Scholar
Mysels, K.J., Shinoda, K. & Frankel, S. 1959 Soap Films: Study of their Thinning and a Bibliography. Pergamon.Google Scholar
Nguyen, K.T. & Nguyen, A.V. 2019 New evidence of head-to-tail complex formation of SDS–DOH mixtures adsorbed at the air–water interface as revealed by vibrational sum frequency generation spectroscopy and isotope labelling. Langmuir 35 (14), 48254833.CrossRefGoogle Scholar
Patist, A., Axelberd, T. & Shah, D.O. 1998 Effect of long chain alcohols on micellar relaxation time and foaming properties of sodium dodecyl sulfate solutions. J. Colloid Interface Sci. 208 (1), 259265.CrossRefGoogle ScholarPubMed
Patist, A., Kanicky, J.R., Shukla, P.K. & Shah, D.O. 2002 Importance of micellar kinetics in relation to technological processes. J. Colloid Interface Sci. 245 (1), 115.CrossRefGoogle ScholarPubMed
Petit, P. 2014 Déformation d'interfaces complexes: des architectures savonneuses aux mousses de particules. PhD thesis, Université de Lyon.Google Scholar
Petit, P., Seiwert, J., Cantat, I. & Biance, A.-L. 2015 On the generation of a foam film during a topological rearrangement. J. Fluid Mech. 763, 286301.CrossRefGoogle Scholar
Princen, H.M. & Kiss, A.D. 1989 Rheology of foams and highly concentrated emulsions: IV. An experimental study of the shear viscosity and yield stress of concentrated emulsions. J. Colloid Interface Sci. 128 (1), 176187.CrossRefGoogle Scholar
Prins, A., Arcuri, C. & Van Den Tempel, M. 1967 Elasticity of thin liquid films. J. Colloid Interface Sci. 24, 8490.CrossRefGoogle Scholar
Prud'homme, R.K. & Khan, S.A. 1996 Experimental Results on Foam Rheology. Marcel Dekker.Google Scholar
Reichert, B., Cantat, I. & Jullien, M.-C. 2019 Predicting droplet velocity in a Hele–Shaw cell. Phys. Rev. F 4 (11), 113602.Google Scholar
Reinelt, D.A. & Kraynik, A.M. 1989 Viscous effects in the rheology of foams and concentrated emulsions. J. Colloid Interface Sci. 132, 491.CrossRefGoogle Scholar
Rutgers, M.A., Wu, X.I., Bhagavatula, R., Petersen, A.A. & Goldburg, W.I. 1996 Two-dimensional velocity profiles and laminar boundary layers in flowing soap films. Phys. Fluids 8 (11), 28472854.CrossRefGoogle Scholar
Salkin, L., Schmit, A., Panizza, P. & Courbin, L. 2016 Generating soap bubbles by blowing on soap films. Phys. Rev. Lett. 116, 077801.CrossRefGoogle ScholarPubMed
Satomi, R., Grassia, P. & Oguey, C. 2013 Modelling relaxation following t1 transformations of foams incorporating surfactant mass transfer by the Marangoni effect. Colloids Surf. A 438, 7784.CrossRefGoogle Scholar
Schwartz, L.W. & Princen, H.M. 1987 A theory of extensional viscosity for flowing foams and concentrated emulsions. J. Colloid Interface Sci. 118, 201211.CrossRefGoogle Scholar
Seiwert, J., Dollet, B. & Cantat, I. 2014 Theoretical study of the generation of soap films: role of interfacial visco-elasticity. J. Fluid Mech. 739, 124142.CrossRefGoogle Scholar
Seiwert, J., Monloubou, M., Dollet, B. & Cantat, I. 2013 Extension of a suspended soap film: a homogeneous dilatation followed by new film extraction. Phys. Rev. Lett. 111, 094501.CrossRefGoogle ScholarPubMed
Shabalina, E., Bérut, A., Cavelier, M., Saint-Jalmes, A. & Cantat, I. 2019 Rayleigh–Taylor-like instability in a foam film. Phys. Rev. Fluids 4, 124001.CrossRefGoogle Scholar
Stone, H.A. 2010 Interfaces: in fluid mechanics and across disciplines. J. Fluid Mech. 645, 125.CrossRefGoogle Scholar
Titta, A., Le Merrer, M., Detcheverry, F., Spelt, P.D.M. & Biance, A.-L. 2018 Level-set simulations of a 2d topological rearrangement in a bubble assembly: effects of surfactant properties. J. Fluid Mech. 838, 222247.CrossRefGoogle Scholar
Vollhardt, D. & Emrich, G. 2000 Coadsorption of sodium dodecyl sulfate and medium-chain alcohols at the air–water interface. Colloids Surf. A 161 (1), 173182.CrossRefGoogle Scholar
Wantke, K.-D., Fruhner, H. & Örtegren, J. 2003 Surface dilatational properties of mixed sodium dodecyl sulfate/dodecanol solutions. Colloids Surf. A 221 (1–3), 185195.CrossRefGoogle Scholar
Zell, Z.A., Nowbahar, A., Mansard, V., Leal, L.G., Deshmukh, S.S., Mecca, J.M., Tucker, C.J. & Squires, T.M. 2014 Surface shear inviscidity of soluble surfactants. Proc. Natl Acad. Sci. USA 111 (10), 36773682.CrossRefGoogle ScholarPubMed