Published online by Cambridge University Press: 26 April 2006
The modelling of small-amplitude pressure waves in dilute single- or multi-component fogs by means of averaged equations is considered. The problem is cast in a singular-perturbation framework in which the suspended droplets are the singularities. This point of view simplifies the local problem in the vicinity of the droplets. Matching in the overlap region provides the coupling with the averaged fields. Among the advantages of the method is the fact that the leading-order effects are clearly identified. In particular it is shown that, for low-amplitude waves and far below the fluid's critical point, phase change effects only start to be important when the vapour mean free path becomes comparable with the drop radius and dominate for yet smaller drops.
This present method for the derivation of effective equations appears to be of general applicability to a variety of multi-phase situations and is illustrated in detail.