Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-19T06:21:14.627Z Has data issue: false hasContentIssue false

The lift force on a spherical bubble in a viscous linear shear flow

Published online by Cambridge University Press:  10 August 1998

DOMINIQUE LEGENDRE
Affiliation:
Institut de Mécanique des Fluides de Toulouse, UMR CNRS/INPT/UPS 5502, 2, Avenue Camille Soula, 31400 Toulouse, France
JACQUES MAGNAUDET
Affiliation:
Institut de Mécanique des Fluides de Toulouse, UMR CNRS/INPT/UPS 5502, 2, Avenue Camille Soula, 31400 Toulouse, France

Abstract

The three-dimensional flow around a spherical bubble moving steadily in a viscous linear shear flow is studied numerically by solving the full Navier–Stokes equations. The bubble surface is assumed to be clean so that the outer flow obeys a zero-shear-stress condition and does not induce any rotation of the bubble. The main goal of the present study is to provide a complete description of the lift force experienced by the bubble and of the mechanisms responsible for this force over a wide range of Reynolds number (0.1[les ]Re[les ]500, Re being based on the bubble diameter) and shear rate (0[les ]Sr[les ]1, Sr being the ratio between the velocity difference across the bubble and the relative velocity). For that purpose the structure of the flow field, the influence of the Reynolds number on the streamwise vorticity field and the distribution of the tangential velocities at the surface of the bubble are first studied in detail. It is shown that the latter distribution which plays a central role in the production of the lift force is dramatically dependent on viscous effects. The numerical results concerning the lift coefficient reveal very different behaviours at low and high Reynolds numbers. These two asymptotic regimes shed light on the respective roles played by the vorticity produced at the bubble surface and by that contained in the undisturbed flow. At low Reynolds number it is found that the lift coefficient depends strongly on both the Reynolds number and the shear rate. In contrast, for moderate to high Reynolds numbers these dependences are found to be very weak. The numerical values obtained for the lift coefficient agree very well with available asymptotic results in the low- and high-Reynolds-number limits. The range of validity of these asymptotic solutions is specified by varying the characteristic parameters of the problem and examining the corresponding evolution of the lift coefficient. The numerical results are also used for obtaining empirical correlations useful for practical calculations at finite Reynolds number. The transient behaviour of the lift force is then examined. It is found that, starting from the undisturbed flow, the value of the lift force at short time differs from its steady value, even when the Reynolds number is high, because the vorticity field needs a finite time to reach its steady distribution. This finding is confirmed by an analytical derivation of the initial value of the lift coefficient in an inviscid shear flow. Finally, a specific investigation of the evolution of the lift and drag coefficients with the shear rate at high Reynolds number is carried out. It is found that when the shear rate becomes large, i.e. Sr=O(1), a small but consistent decrease of the lift coefficient occurs while a very significant increase of the drag coefficient, essentially produced by the modifications of the pressure distribution, is observed. Some of the foregoing results are used to show that the well-known equality between the added mass coefficient and the lift coefficient holds only in the limit of weak shears and nearly steady flows.

Type
Research Article
Copyright
© 1998 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)