Hostname: page-component-f554764f5-68cz6 Total loading time: 0 Render date: 2025-04-18T18:33:42.647Z Has data issue: false hasContentIssue false

Leveraging initial conditions memory for modelling Rayleigh–Taylor turbulence

Published online by Cambridge University Press:  14 April 2025

Sébastien Thévenin
Affiliation:
CEA, DAM, DIF, Arpajon F-91297, France Université Paris-Saclay, CEA, LMCE, Bruyères-e-Châtel F-91680, France
Benoît-Joseph Gréa*
Affiliation:
CEA, DAM, DIF, Arpajon F-91297, France Université Paris-Saclay, CEA, LMCE, Bruyères-e-Châtel F-91680, France
Gilles Kluth
Affiliation:
CEA, DAM, DIF, Arpajon F-91297, France Université Paris-Saclay, CEA, LMCE, Bruyères-e-Châtel F-91680, France
Balasubramanya T. Nadiga
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, USA
*
Corresponding author: Benoît-Joseph Gréa, [email protected]

Abstract

In this study, we tackle the challenge of inferring the initial conditions of a Rayleigh–Taylor mixing zone for modelling purposes by analysing zero-dimensional (0-D) turbulent quantities measured at an unspecified time. This approach assesses the extent to which 0-D observations retain the memory of the flow, evaluating their effectiveness in determining initial conditions and, consequently, in predicting the flow’s evolution. To this end, we generated a comprehensive dataset of direct numerical simulations, focusing on miscible fluids with low density contrasts. The initial interface deformations in these simulations are characterised by an annular spectrum parametrised by four non-dimensional numbers. To study the sensitivity of 0-D turbulent quantities to initial perturbation distributions, we developed a surrogate model using a physics-informed neural network (PINN). This model enables computation of the Sobol indices for the turbulent quantities, disentangling the effects of the initial parameters on the growth of the mixing layer. Within a Bayesian framework, we employ a Markov chain Monte Carlo (MCMC) method to determine the posterior distributions of initial conditions and time, given various state variables. This analysis sheds light on inertial and diffusive trajectories, as well as the progressive loss of initial conditions memory during the transition to turbulence. Furthermore, it identifies which turbulent quantities serve as better predictors of Rayleigh–Taylor mixing zone dynamics by more effectively retaining the memory of the flow. By inferring initial conditions and forward propagating the maximum a posteriori (MAP) estimate, we propose a strategy for modelling the Rayleigh–Taylor transition to turbulence.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abu-Shawareb, H. et al. 2024 Achievement of target gain larger than unity in an inertial fusion experiment. Phys. Rev. Lett. 132 (6), 065102.CrossRefGoogle Scholar
Andrews, M.J. & Dalziel, S.B. 2010 Small Atwood number Rayleigh–Taylor experiments. Phil. Trans. R. Soc. Lond. A: Math. Phys. Engng Sci. 368 (1916), 16631679.Google ScholarPubMed
Andrews, M.J. & Spalding, D.B. 1990 A simple experiment to investigate two-dimensional mixing by Rayleigh–Taylor instability. Phys. Fluids A: Fluid Dyn. 2 (6), 922927.CrossRefGoogle Scholar
Aslangil, D., Lawrie, A.G.W. & Banerjee, A. 2022 Effects of variable deceleration periods on Rayleigh–Taylor instability with acceleration reversals. Phys. Rev. E 105 (6), 065103.CrossRefGoogle ScholarPubMed
Banerjee, A., Gore, R.A. & Andrews, M.J. 2010 Development and validation of a turbulent-mix model for variable-density and compressible flows. Phys. Rev. E 82 (4), 046309.CrossRefGoogle ScholarPubMed
Bian, X., Aluie, H., Zhao, D., Zhang, H. & Livescu, D. 2020 Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity. Physica D: Nonlinear Phenom. 403, 132250.CrossRefGoogle Scholar
Boffetta, G. & Mazzino, A. 2017 Incompressible Rayleigh–Taylor turbulence. Annu. Rev. Fluid Mech. 49 (1), 119143.CrossRefGoogle Scholar
Boffetta, G., Mazzino, A. & Musacchio, S. 2011 Effects of polymer additives on Rayleigh–Taylor turbulence. Phys. Rev. E 83 (5), 056318.CrossRefGoogle ScholarPubMed
Boffetta, G., Mazzino, A., Musacchio, S. & Vozella, L. 2010 Statistics of mixing in three-dimensional Rayleigh–Taylor turbulence at low Atwood number and Prandtl number one. Phys. Fluids 22 (3), 035109.CrossRefGoogle Scholar
Briard, A., Gostiaux, L. & Gréa, B.-J. 2020 The turbulent Faraday instability in miscible fluids. J. Fluid Mech. 883, A57.CrossRefGoogle Scholar
Briard, A., Gréa, B.-J. & Nguyen, F. 2022 Growth rate of the turbulent magnetic Rayleigh–Taylor instability. Phys. Rev. E 106 (6), 065201.CrossRefGoogle ScholarPubMed
Briard, A., Gréa, B.-J. & Nguyen, F. 2024 Turbulent mixing in the vertical magnetic Rayleigh–Taylor instability. J. Fluid Mech. 979, A8.CrossRefGoogle Scholar
Brunton, S.L., Noack, B.R. & Koumoutsakos, P. 2020 Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52 (1), 477508.CrossRefGoogle Scholar
Buaria, D. & Sreenivasan, K.R. 2023 Forecasting small-scale dynamics of fluid turbulence using deep neural networks. Proc. Natl Acad. Sci. USA 120 (30), e2305765120.CrossRefGoogle ScholarPubMed
Cavelier, M., Gréa, B.-J., Briard, A. & Gostiaux, L. 2022 The subcritical transition to turbulence of Faraday waves in miscible fluids. J. Fluid Mech. 934, A34.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover Publications.Google Scholar
Cook, A. & Cabot, W. 2006 Reynolds number effects on Rayleigh–Taylor instability with possible implications for type-ia supernovae. Nat. Phys. 2 (8), 562568.Google Scholar
Cook, A.W., Cabot, W. & Miller, P.L. 2004 The mixing transition in Rayleigh–Taylor instability. J. Fluid Mech. 511, 333362.CrossRefGoogle Scholar
Cook, A.W. & Dimotakis, P.E. 2001 Transition stages of Rayleigh–Taylor instability between miscible fluids. J. Fluid Mech. 443, 6999.CrossRefGoogle Scholar
Dalziel, S.B., Linden, P.F. & Youngs, D.L. 1999 Self-similarity and internal structure of turbulence induced by Rayleigh–Taylor instability. J. Fluids Mech. 399, 148.CrossRefGoogle Scholar
Davies Wykes, M.S. & Dalziel, S.B. 2014 Efficient mixing in stratified flows: experimental study of a Rayleigh–Taylor unstable interface within an otherwise stable stratification. J. Fluid Mech. 756, 10271057.CrossRefGoogle Scholar
Dimonte, G. 2004 Dependence of turbulent Rayleigh–Taylor instability on initial perturbations. Phys. Rev. E 69 (5), 056305.CrossRefGoogle ScholarPubMed
Dimonte, G., Ramaprabhu, P. & Andrews, M. 2007 Rayleigh–Taylor instability with complex acceleration history. Phys. Rev. E 76 (4), 046313.CrossRefGoogle ScholarPubMed
Dimonte, G., et al. 2004 A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: the alpha–Group collaboration. Phys. Fluids 16 (5), 16681693.CrossRefGoogle Scholar
Duff, R.E., Harlow, F.H. & Hirt, C.W. 1962 Effects of diffusion on interface instability between gases. Phys. Fluids 5 (4), 417425.CrossRefGoogle Scholar
Duraisamy, K., Iaccarino, G. & Xiao, H. 2019 Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51 (1), 357377.CrossRefGoogle Scholar
Falcioni, M. & Deem, M.W. 1999 A biased Monte Carlo scheme for zeolite structure solution. J. Chem. Phys. 110 (3), 17541766.CrossRefGoogle Scholar
Fermi, E. & von Neumann, J. 1953 Taylor instability of an incompressible liquid. Tech. Rep. No. AECU-2979 (Oak Ridge, TN: US Atomic Energy Commission, Technology Information Service).Google Scholar
Fernando, H.J.S. 1991 Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23 (1), 455493.CrossRefGoogle Scholar
Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. 1995 Bayesian Data Analysis. Chapman and Hall/CRC.CrossRefGoogle Scholar
Geyer, C.J. 1992 Practical Markov chain Monte Carlo. Stat. Sci. 7 (4), 473483.Google Scholar
Goncharov, V.N. 2002 Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary atwood numbers. Phys. Rev. Lett. 88 (13), 134502134504.CrossRefGoogle ScholarPubMed
Gréa, B.-J. 2013 The rapid acceleration model and the growth rate of a turbulent mixing zone induced by Rayleigh–Taylor instability. Phys. Fluids 25 (1), 015118.CrossRefGoogle Scholar
Gréa, B.-J. & Briard, A. 2019 Frozen waves in turbulent mixing layers. Phys. Rev. Fluids 4 (6), 064608.CrossRefGoogle Scholar
Gréa, B.-J. & Briard, A. 2023 Inferring the magnetic field from the Rayleigh–Taylor instability. Astrophys. J. 958 (2), 164.CrossRefGoogle Scholar
Gregg, M.C., D’Asaro, E.A., Riley, J.J. & Kunze, E. 2018 Mixing efficiency in the ocean. Annu. Rev. Mar. Sci. 10 (1), 443473.CrossRefGoogle ScholarPubMed
Grégoire, O., Souffland, D. & Gauthier, S. 2005 A second-order turbulence model for gaseous mixtures induced by Richtmyer–Meshkov instability. J. Turbul. 6, N29.CrossRefGoogle Scholar
Guastoni, L., Güemes, A., Ianiro, A., Discetti, S., Schlatter, P., Azizpour, H. & Vinuesa, R. 2021 Convolutional-network models to predict wall-bounded turbulence from wall quantities. J. Fluid Mech. 928, A27.CrossRefGoogle Scholar
Hastings, W.K. 1970 Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 (1), 97109.CrossRefGoogle Scholar
Hillier, A. 2018 The magnetic Rayleigh–Taylor instability in solar prominences. Rev. Mod. Plasma Phys. 2 (1), 1.CrossRefGoogle Scholar
Hurricane, O.A. et al. 2024 Energy principles of scientific breakeven in an inertial fusion experiment. Phys. Rev. Lett. 132 (6), 065103.CrossRefGoogle Scholar
Joseph, D.D. 2013 Fluid dynamics of viscoelastic liquids. vol. 84. Springer.Google Scholar
Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S. & Yang, L. 2021 Physics-informed machine learning. Nat. Rev. Phys. 3 (6), 422440.CrossRefGoogle Scholar
Kingma, D.P. 2014 Adam: a method for stochastic optimization. arXiv preprint arXiv: 1412.6980.Google Scholar
Kord, A. & Capecelatro, J. 2019 Optimal perturbations for controlling the growth of a Rayleigh–Taylor instability. J. Fluid Mech. 876, 150185.CrossRefGoogle Scholar
Layzer, D. 1955 On the instability of superposed fluids in a gravitational field. Astrophys. J. 122, 1.CrossRefGoogle Scholar
Lindl, J. 1995 Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2 (11), 39334024.CrossRefGoogle Scholar
Ling, J., Kurzawski, A. & Templeton, J. 2016 Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155166.CrossRefGoogle Scholar
Livescu, D. 2013 Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh–Taylor instability. Phil. Trans. R. Soc. Lond. A: Math. Phys. Engng Sci. 371 (2003), 20120185.Google Scholar
Livescu, D., Ristorcelli, J.R., Petersen, M.R. & Gore, R.A. 2010 New phenomena in variable-density Rayleigh–Taylor turbulence. Phys. Scripta T142 (T142), 014015.CrossRefGoogle Scholar
Livescu, D., Wei, T. & Brady, P.T. 2021 Rayleigh–Taylor instability with gravity reversal. Physica D: Nonlinear Phenom. 417, 132832.CrossRefGoogle Scholar
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. & Teller, E. 1953 Equation of state calculations by fast computing machines. J. Chem. Phys. 21 (6), 10871092.CrossRefGoogle Scholar
Morgan, B.E. 2022 Large-eddy simulation and Reynolds-averaged Navier–Stokes modeling of three Rayleigh–Taylor mixing configurations with gravity reversal. Phys. Rev. E 106 (2), 025101.CrossRefGoogle ScholarPubMed
Morgan, B.E. & Black, W.J. 2020 Parametric investigation of the transition to turbulence in Rayleigh–Taylor mixing. Physica D: Nonlinear Phenom. 402, 132223.CrossRefGoogle Scholar
Morgan, B.E., Olson, B.J., White, J.E. & McFarland, J.A. 2017 Self-similarity of a Rayleigh–Taylor mixing layer at low Atwood number with a multimode initial perturbation. J. Turbul. 18 (10), 973999.CrossRefGoogle Scholar
Morgan, B.E. & Wickett, M.E. 2015 Three-equation model for the self-similar growth of Rayleigh–Taylor and Richtmyer–Meskov instabilities. Phys. Rev. E 91 (4), 043002.CrossRefGoogle ScholarPubMed
Mueschke, N.J., Andrews, M.J. & Schilling, O. 2006 Experimental characterization of initial conditions and spatio-temporal evolution of a small-Atwood-number Rayleigh–Taylor mixing layer. J. Fluid Mech. 567, 2763.CrossRefGoogle Scholar
Mueschke, N.J. & Schilling, O. 2009 a Investigation of Rayleigh–Taylor turbulence and mixing using direct numerical simulation with experimentally measured initial conditions. I. Comparison to experimental data. Phys. Fluids 21 (1), 014106.CrossRefGoogle Scholar
Mueschke, N.J. & Schilling, O. 2009 b Investigation of Rayleigh–Taylor turbulence and mixing using direct numerical simulation with experimentally measured initial conditions. II. Dynamics of transitional flow and mixing statistics. Phys. Fluids 21 (1), 014107.CrossRefGoogle Scholar
Nadiga, B., Jiang, C. & Livescu, D. 2019 Leveraging Bayesian analysis to improve accuracy of approximate models. J. Comput. Phys. 394, 280297.CrossRefGoogle Scholar
Nakai, S. & Takabe, H. 1996 Principles of inertial confinement fusion-physics of implosion and the concept of inertial fusion energy. Rep. Prog. Phys. 59 (9), 10711131.CrossRefGoogle Scholar
Paszke, A. et al. 2019 An imperative style, high-performance deep learning library. arXiv: 191201703.Google Scholar
Porth, O., Komissarov, S.S. & Keppens, R. 2014 Rayleigh–Taylor instability in magnetohydrodynamic simulations of the crab nebula. Mon. Not. R. Astron. Soc. 443 (1), 547558.CrossRefGoogle Scholar
Poujade, O. & Peybernes, M. 2010 Growth rate of Rayleigh–Taylor turbulent mixing layers with the foliation approach. Phys. Rev. E 81 (1), 016316.CrossRefGoogle ScholarPubMed
Ramaprabhu, P. & Andrews, M.J. 2004 Experimental investigation of Rayleigh–Taylor mixing at small atwood numbers. J. Fluid Mech. 502, 233271.CrossRefGoogle Scholar
Ramaprabhu, P., Dimonte, G. & Andrews, M.J. 2005 A numerical study of the influence of initial perturbations on the turbulent Rayleigh–Taylor instability. J. Fluid Mech. 536, 285319.CrossRefGoogle Scholar
Ramaprabhu, P., Dimonte, G., Young, Y.N., Calder, A.C. & Fryxell, B. 2006 Limits of the potential flow approach to the single-mode Rayleigh–Taylor problem. Phys. Rev. E 74 (6), 06308.CrossRefGoogle Scholar
Ramaprabhu, P., Karkhanis, V. & Lawrie, A.G.W. 2013 The Rayleigh–Taylor instability driven by an accel-decel-accel profile. Phys. Fluids 25 (11), 115104.CrossRefGoogle Scholar
Ramshaw, J.D. 1998 Simple model for linear and nonlinear mixing at unstable fluid interfaces with variable acceleration. Phys. Rev. E 58 (5), 58345840.CrossRefGoogle Scholar
Rayleigh, 1882 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. s1-14(1), 170177.CrossRefGoogle Scholar
Ristorcelli, J.R. & Clark, T.T. 2004 Rayleigh–Taylor turbulence: self-similar analysis and direct numerical simulations. J. Fluid Mech. 507, 213253.CrossRefGoogle Scholar
Roberts, M.S. & Jacobs, J.W. 2016 The effects of forced small-wavelength, finite-bandwidth initial perturbations and miscibility on the turbulent Rayleigh–Taylor instability. J. Fluid Mech. 787, 5083.CrossRefGoogle Scholar
Roy, V. 2020 Convergence diagnostics for Markov chain–Monte Carlo. Annu. Rev. Stat. Applics. 7 (1), 387412.CrossRefGoogle Scholar
Saltelli, A. 2008 Global Sensitivity Analysis: the Primer. John Wiley & Sons.Google Scholar
Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S. & Wu, Q. 2019 Why so many published sensitivity analyses are false: a systematic review of sensitivity analysis practices. Environ. Model. Softw. 114, 2939.CrossRefGoogle Scholar
Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M. & Tarantola, S. 2010 Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index. Comput. Phys. Commun. 181 (2), 259270.CrossRefGoogle Scholar
Sambridge, M. 2014 A parallel tempering algorithm for probabilistic sampling and multimodal optimization. Geophys. J. Intl 196 (1), 357374.CrossRefGoogle Scholar
Schilling, O. 2020 Progress on understanding Rayleigh–Taylor flow and mixing using synergy between simulation, modeling, and experiment. J.Fluids Engng 142 (12), 120802.CrossRefGoogle Scholar
Schilling, O. & Mueschke, N.J. 2010 Analysis of turbulent transport and mixing in transitional Rayleigh–Taylor unstable flow using direct numerical simulation data. Phys. Fluids 22 (10), 105102.CrossRefGoogle Scholar
Schilling, O. & Mueschke, N.J. 2017 Turbulent transport and mixing in transitional Rayleigh–Taylor unstable flow: a priori assessment of gradient-diffusion and similarity modeling. Phys. Rev. E 96 (6), 063111.CrossRefGoogle Scholar
Schwarzkopf, J.D., Livescu, D., Gore, R.A., Rauenzahn, R.M. & Ristorcelli, J.R. 2011 Application of a second-moment closure model to mixing processes involving multicomponent miscible fluids. J. Turbul. 12, N49.CrossRefGoogle Scholar
Sharp, D.H. 1984 An overview of Rayleigh–Taylor instability. Physica D: Nonlinear Phenom. 12 (1), 318.CrossRefGoogle Scholar
Soboĺ, I.M. 1993 Sensitivity estimates for nonlinear mathematical models. Math. Model. Comput. Exp. 1, 407.Google Scholar
Solera-Rico, A., Sanmiguel Vila, C., Gómez-López, M., Wang, Y., Almashjary, A., Dawson, S.T.M. & Vinuesa, R. 2024 beta-Variational autoencoders and transformers for reduced-order modelling of fluid flows. Nat. Commun. 15(1), 1361,CrossRefGoogle ScholarPubMed
Soulard, O., Griffond, J. & Gréa, B.-J. 2015 Large-scale analysis of unconfined self-similar Rayleigh–Taylor turbulence. Phys. Fluids 27 (9).CrossRefGoogle Scholar
Taylor, G.I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. i, Proc. R. Soc. Lond. A. Math. Phys. Sci. 201, 192196,Google Scholar
Thévenin, S. 2024 Contribution of machine learning to the modeling of turbulent mixing. PhD thesis, Université Paris-Saclay, France.Google Scholar
Thévenin, S., Gréa, B.-J., Kluth, G. & Briard, A. 2025 Database of direct numerical simulations of Rayleigh–Taylor turbulence at low density contrast: 0D volume-averaged quantities.Google Scholar
Thornber, B., Drikakis, D., Youngs, D.L. & Williams, R.J.R. 2010 The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability. J. Fluid Mech. 654, 99139.CrossRefGoogle Scholar
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P.-C. 2021 Rank-normalization, folding, and localization: an improved $\widehat {R}$ for assessing convergence of mcmc (with discussion). Bayesian Anal. 16 (2), 667718.CrossRefGoogle Scholar
Viciconte, G., Gréa, B.-J., Godeferd, F.S., Arnault, P. & Clérouin, J. 2019 Sudden diffusion of turbulent mixing layers in weakly coupled plasmas under compression. Phys. Rev. E 100 (6), 063205.CrossRefGoogle ScholarPubMed
Vladimirova, N. & Chertkov, M. 2009 Self-similarity and universality in Rayleigh–Taylor, Boussinesq turbulence. Phys. Fluids 21 (1), 015102.CrossRefGoogle Scholar
Xiao, H. & Cinnella, P. 2019 Quantification of model uncertainty in RANS simulations: a review. Prog. Aerosp. Sci. 108, 131.CrossRefGoogle Scholar
Young, Y.-N., Tufo, H., Dubey, A. & Rosner, R. 2001 On the miscible Rayleigh–Taylor instability: two and three dimensions. J. Fluid Mech. 447, 377408.CrossRefGoogle Scholar
Youngs, D.L. 2013 The density ratio dependence of self-similar Rayleigh–Taylor mixing. Phil. Trans. R. Soc. Lond. A: Math. 3 (71), 20120173.Google Scholar
Zhou, Y. 2017 Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. ii. Phys. Rep. 723-725, 1160.Google Scholar
Zhou, Y. et al. 2021 Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales. Physica D: Nonlinear Phenom. 423, 132838.CrossRefGoogle Scholar
Zhu, L., Jiang, X., Lefauve, A., Kerswell, R.R. & Linden, P.F. 2024 New insights into experimental stratified flows obtained through physics-informed neural networks. J. Fluid Mech. 981, R1.CrossRefGoogle Scholar