Published online by Cambridge University Press: 28 March 2006
After an extensive survey of mean-velocity profile measurements in various two-dimensional incompressible turbulent boundary-layer flows, it is proposed to represent the profile by a linear combination of two universal functions. One is the well-known law of the wall. The other, called the law of the wake, is characterized by the profile at a point of separation or reattachment. These functions are considered to be established empirically, by a study of the mean-velocity profile, without reference to any hypothetical mechanism of turbulence. Using the resulting complete analytic representation for the mean-velocity field, the shearing-stress field for several flows is computed from the boundary-layer equations and compared with experimental data.
The development of a turbulent boundary layer is ultimately interpreted in terms of an equivalent wake profile, which supposedly represents the large-eddy structure and is a consequence of the constraint provided by inertia. This equivalent wake profile is modified by the presence of a wall, at which a further constraint is provided by viscosity. The wall constraint, although it penetrates the entire boundary layer, is manifested chiefly in the sublayer flow and in the logarithmic profile near the wall.
Finally, it is suggested that yawed or three-dimensional flows may be usefully represented by the same two universal functions, considered as vector rather than scalar quantities. If the wall component is defined to be in the direction of the surface shearing stress, then the wake component, at least in the few cases studied, is found to be very nearly parallel to the gradient of the pressure.