Published online by Cambridge University Press: 26 April 2006
Extensive experimental studies are presented of the effects of prolonged streamline divergence on developing turbulent boundary layers. The experiment was arranged as source flow over a flat plate with a maximum divergence parameter of about 0.075. Mild, but alternating in sign, upstream-pressure-gradient effects on diverging boundary layers are also discussed.
It appears that two overlapping stages of development are involved. The initial stage covers a distance of about 20 initial boundary-layer thicknesses (δ0) from the start of divergence, where the coupled effects of pressure gradient and divergence are present. In this region there is a fairly large reduction in divergence parameter, Rθ (Reynolds number based on momentum thickness) remains constant (≈ 1400) and the boundary-layer properties change rapidly. In the second region, which lasts nearly to the end of the diverging section, the pressure-gradient effects are negligible, the rate of decrease in divergence parameter is very small and Rθ increases gradually. Up to the last measurement station (≈ 100δ0) the flow is still considered to be at a low Reynolds number (Rθ ≈ 2000). For almost the entire length of this region, the profiles of non-dimensional eddy viscosity appear to be self-similar, but have larger values than for the unperturbed flow. Also in this region, beyond 35δ0, the wake parameter, which has reduced significantly, becomes nearly constant and independent of Rθ. On the other hand the entrainment rate attains a constant value at around 50δ0. It appears that the boundary layer reaches a state of equilibrium. It is suggested that this is the result of an enhanced turbulent diffusion to the outer layer. Spectral measurements show that divergence affects mainly the low-wavenumber, large-scale motions. However, there is no change in large-eddy configurations, since the dimensionless structure parameters show only negligible deviations from the unperturbed values.