Published online by Cambridge University Press: 29 March 2006
The two-dimensional theory of lunate-tail propulsion is extended to motions of arbitrary amplitude, regular or irregular, so that an accurate comparison may be made with the actual lunate-tail propulsion of scombroid fishes and cetacean mammals. There is no restriction at all on the amplitude of motion but the tail's angle of attack relative to its instantaneous path through the water is assumed to remain small. The theory is applied to the regular finite amplitude motion of a thin aerofoil with a rounded leading edge to take advantage of the suction force and a sharp trailing edge to ensure smooth tangential flow past the rear tip. This can represent the vertical motions of the horizontal lunate tails of large aspect ratio with which cetacean mammals propel themselves or the horizontal undulations of the vertical lunate tails of certain fast fishes. The dependence of the thrust, the hydromechanical propulsive efficiency and the energy wasted in churning up the eddying wake on the reduced frequency, the angle of attack and the amplitude of motion is exhibited.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.