Published online by Cambridge University Press: 28 March 2006
The flow induced by gravity about a very small heated isothermal sphere introduced into a fluid in hydrostatic equilibrium is studied. The natural-convection flow is taken to be steady and laminar. The conditions under which the Boussinesq model is a good approximation to the full conservation laws are described. For a concentric finite cold outer sphere with radius, in ratio to the heated sphere radius, roughly less than the Grashof number to the minus one-half power, a recirculating flow occurs; fluid rises near the inner sphere and falls near the outer sphere. For a small heated sphere in an unbounded medium an ordinary perturbation expansion essentially in the Grashof number leads to unbounded velocities far from the sphere; this singularity is the natural-convection analogue of the Whitehead paradox arising in three-dimensional low-Reynolds-number forced-convection flows. Inner-and-outer matched asymptotic expansions reveal the importance of convective transport away from the sphere, although diffusive transport is dominant near the sphere. Approximate solution is given to the nonlinear outer equations, first by seeking a similarity solution (in paraboloidal co-ordinates) for a point heat source valid far from the point source, and then by linearization in the manner of Oseen. The Oseen solution is matched to the inner diffusive solution. Both outer solutions describe a paraboloidal wake above the sphere within which the enthalpy decays slowly relative to the rapid decay outside the wake. The updraft above the sphere is reduced from unbounded growth with distance from the sphere to constant magnitude by restoration of the convective accelerations. Finally, the role of vertical stratification of the ambient density in eventually stagnating updrafts predicted on the basis of a constant-density atmosphere is discussed.