Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T15:57:28.943Z Has data issue: false hasContentIssue false

Laminar free shear layer modification using localized periodic heating

Published online by Cambridge University Press:  07 June 2017

Chi-An Yeh*
Affiliation:
Department of Mechanical Engineering, Florida State University, Tallahassee, FL 32310, USA
Phillip M. Munday
Affiliation:
Department of Mechanical Engineering, Florida State University, Tallahassee, FL 32310, USA
Kunihiko Taira
Affiliation:
Department of Mechanical Engineering, Florida State University, Tallahassee, FL 32310, USA
*
Email address for correspondence: [email protected]

Abstract

The application of local periodic heating for control of a spatially developing shear layer downstream of a finite-thickness splitter plate is examined by numerically solving the two-dimensional Navier–Stokes equations. At the trailing edge of the plate, an oscillatory heat flux boundary condition is prescribed as the thermal forcing input to the shear layer. The thermal forcing introduces a low level of oscillatory surface vorticity flux and baroclinic vorticity at the actuation frequency in the vicinity of the trailing edge. The vortical perturbations produced can independently excite the fundamental instability that accounts for shear layer roll-up as well as the subharmonic instability that encourages the vortex pairing process farther downstream. We demonstrate that the nonlinear dynamics of a spatially developing shear layer can be modified by local oscillatory heat flux as a control input. We believe that this study provides a basic foundation for flow control using thermal-energy-deposition-based actuators such as thermophones and plasma actuators.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, T., Takizawa, Y., Sato, S. & Kimura, N. 2008 Experimental study for momentum transfer in a dielectric barrier discharge plasma actuator. AIAA J. 46 (9), 22482256.CrossRefGoogle Scholar
Adamovich, I. V., Little, J., Nishihara, M., Takashima, K. & Samimy, M.2012 Nanosecond pulse surface discharges for high-speed flow control. AIAA Paper 2012-3137.CrossRefGoogle Scholar
Akins, D., Singh, A. & Little, J.2015 Effects of pulse energy on shear layer control using surface plasma discharges. AIAA Paper 2015-3344.CrossRefGoogle Scholar
Aleksandrov, N. L., Kindysheva, S. V., Nudnova, M. M. & Starikovskiy, A. Y. 2010 Mechanism of ultra-fast heating in a non-equilibrium weakly ionized air discharge plasma in high electric fields. J. Phys. D: Appl. Phys. 43 (25), 255201.CrossRefGoogle Scholar
Arnold, H. D. & Crandall, I. B. 1917 The thermophone as a precision source of sound. Phys. Rev. 10 (1), 2238.CrossRefGoogle Scholar
Barone, M. F. & Lele, S. K. 2005 Receptivity of the compressible mixing layer. J. Fluid Mech. 540, 301335.CrossRefGoogle Scholar
Bechert, D. W. 1988 Excitation of instability waves in free shear layers. Part 1. Theory. J. Fluid Mech. 186, 4762.CrossRefGoogle Scholar
Bechert, D. W. & Stahl, B. 1988 Excitation of instability waves in free shear layers. Part 2. Experiments. J. Fluid Mech. 186, 6384.CrossRefGoogle Scholar
Bin, J., Oates, W. S. & Taira, K. 2015 Thermoacoustic modeling and uncertainty analysis of two-dimensional conductive membranes. J. Appl. Phys. 117 (6), 064506.CrossRefGoogle Scholar
Brès, G. A., Ham, F. E., Nichols, J. W. & Lele, S. K. 2017 Unstructured large-eddy simulations of supersonic jets. AIAA J. 55 (4), 11641184 CrossRefGoogle Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64 (04), 775816.CrossRefGoogle Scholar
Cattafesta, L. N., Song, Q., Williams, D. R., Rowley, C. W. & Alvi, F. S. 2008 Active control of flow-induced cavity oscillations. Prog. Aerosp. Sci. 44, 479502.CrossRefGoogle Scholar
Cheung, L. C. & Lele, S. K. 2009 The dynamics of nonlinear instability waves in laminar heated and unheated compressible mixing layers. Phys. Fluids 21 (9), 094103.CrossRefGoogle Scholar
Choi, H. & Moin, P. 2012 Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24 (1), 011702.CrossRefGoogle Scholar
Clemens, N. T. & Mungal, M. G. 1995 Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284, 171216.CrossRefGoogle Scholar
Corke, T. C., Enloe, C. L. & Wilkinson, S. P. 2010 Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42, 505529.CrossRefGoogle Scholar
Corke, T. C., He, C. & Patel, M. 2009 Plasma flaps and slats: an application of weakly-ionized plasma actuators. J. Aircraft 46 (3), 864873.Google Scholar
Crighton, D. G. 1985 The Kutta condition in unsteady flow. Annu. Rev. Fluid Mech. 17 (1), 411445.CrossRefGoogle Scholar
Elliott, G. S. & Samimy, M. 1990 Compressibility effects in free shear layers. Phys. Fluids A 2 (7), 12311240.CrossRefGoogle Scholar
Freund, J. B. 1997 Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound. AIAA J. 35 (4), 740742.CrossRefGoogle Scholar
Gad-el Hak, M. & Bushnell, D. M. 1991 Separation control: review. Trans. ASME J. Fluids Engng 113 (1), 530.CrossRefGoogle Scholar
Garnier, E., Adams, N. & Sagaut, P. 2009 Large Eddy Simulation for Compressible Flows. Springer Science & Business Media.CrossRefGoogle Scholar
Glezer, A. & Amitay, M. 2002 Synthetic jets. Annu. Rev. Fluid Mech. 34 (1), 503529.CrossRefGoogle Scholar
Greenblatt, D., Paschal, K. B., Yao, C.-S. & Harris, J. 2006 Experimental investigation of separation control part 2: zero mass-flux oscillatory blowing. AIAA J. 44 (12), 28312845.CrossRefGoogle Scholar
Ho, C.-M. & Huang, L.-S. 1982 Subharmonics and vortex merging in mixing layers. J. Fluid Mech. 119, 443473.CrossRefGoogle Scholar
Ho, C.-M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16 (1), 365422.CrossRefGoogle Scholar
Hornung, H. 1989 Vorticity generation and transport. In 10th Australasian Fluid Mechanics Conference, Paper KS-3.Google Scholar
Khalighi, Y., Ham, F., Moin, P., Lele, S., Schlinker, R., Reba, R. & Simonich, J. 2011a Noise prediction of pressure-mismatched jets using unstructured large eddy simulation. In Proceedings of ASME Turbo Expo, Vancouver.Google Scholar
Khalighi, Y., Nichols, J. W., Ham, F., Lele, S. K. & Moin, P.2011b Unstructured large eddy simulation for prediction of noise issued from turbulent jets in various configurations. AIAA Paper 2011-2886.CrossRefGoogle Scholar
Kourta, A., Braza, M., Chassaing, P. & Haminh, H. 1987 Numerical analysis of a natural and excited two-dimensional mixing layer. AIAA J. 25 (2), 279286.CrossRefGoogle Scholar
Laizet, S., Lardeau, S. & Lamballais, E. 2010 Direct numerical simulation of a mixing layer downstream a thick splitter plate. Phys. Fluids 22 (1), 015104.CrossRefGoogle Scholar
Lehmann, R., Akins, D. & Little, J.2014 Effects of ns-DBD plasma actuators on turbulent shear layers. AIAA Paper 2014-2220.CrossRefGoogle Scholar
Little, J., Takashima, K., Nishihara, M., Adamovich, I. V. & Samimy, M. 2012 Separation control with nanosecond-pulse-driven dielectric barrier discharge plasma actuators. AIAA J. 50 (2), 350365.CrossRefGoogle Scholar
Mehta, R. D. 1991 Effect of velocity ratio on plane mixing layer development: influence of the splitter plate wake. Exp. Fluids 10 (4), 194204.CrossRefGoogle Scholar
Monkewitz, P. A. & Huerre, P. 1982 Influence of the velocity ratio on the spatial instability of mixing layers. Phys. Fluids 25 (7), 11371143.CrossRefGoogle Scholar
Nudnova, M. M., Aleksandrov, N. L. & Starikovskii, A. Y. 2010 Influence of the voltage polarity on the properties of a nanosecond surface barrier discharge in atmospheric-pressure air. Plasma Phys. Rep. 36 (1), 9098.CrossRefGoogle Scholar
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.CrossRefGoogle Scholar
Popov, N. A. 2011 Fast gas heating in a nitrogen–oxygen discharge plasma: I. Kinetic mechanism. J. Phys. D: Appl. Phys. 44 (28), 285201.CrossRefGoogle Scholar
Post, M. L. & Corke, T. C. 2004 Separation control on high angle of attack airfoil using plasma actuators. AIAA J. 42 (11), 21772184.CrossRefGoogle Scholar
Sabatini, R. & Bailly, C. 2014 Numerical algorithm for computing acoustic and vortical spatial instability waves. AIAA J. 53 (3), 692702.CrossRefGoogle Scholar
Samimy, M., Kim, J.-H., Kastner, J., Adamovich, I. V. & Utkin, Y 2007 Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech. 578, 305330.CrossRefGoogle Scholar
Seifert, A. & Pack, L. G. 1999 Oscillatory control of separation at high Reynolds numbers. AIAA J. 37 (9), 10621071.CrossRefGoogle Scholar
Sharma, A., Bhaskaran, R. & Lele, S. K.2011 Large-eddy simulation of supersonic, turbulent mixing layers downstream of a splitter plate. AIAA Paper 2011-208.Google Scholar
Sinha, A., Alkandry, H., Kearney-Fischer, M., Samimy, M. & Colonius, T. 2012 The impulse response of a high-speed jet forced with localized arc filament plasma actuators. Phys. Fluids 24 (12), 125104.CrossRefGoogle Scholar
Tian, H., Ren, T.-L., Xie, D., Wang, Y.-F., Zhou, C.-J., Feng, T.-T., Fu, D., Yang, Y., Peng, P.-G., Wang, L.-G. et al. 2011 Graphene-on-paper sound source devices. ACS Nano 5 (6), 48784885.CrossRefGoogle ScholarPubMed
Vukasinovic, B., Rusak, Z. & Glezer, A 2010 Dissipative small-scale actuation of a turbulent shear layer. J. Fluid Mech. 656, 5181.CrossRefGoogle Scholar
Wiltse, J. M. & Glezer, A. 1998 Direct excitation of small-scale motions in free shear flows. Phys. Fluids 10 (8), 20262036.CrossRefGoogle Scholar
Winant, C. D. & Browand, F. K. 1974 Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63 (02), 237255.CrossRefGoogle Scholar
Wu, J.-Z. & Wu, J.-M. 1993 Interactions between a solid surface and a viscous compressible flow field. J. Fluid Mech. 254, 183211.CrossRefGoogle Scholar
Yeh, C.-A., Munday, P. & Taira, K.2017 Use of local periodic heating for separation control on a NACA 0012 airfoil. AIAA Paper 2017-1451.CrossRefGoogle Scholar
Zhuang, M. & Dimotakis, P. E. 1995 Instability of wake-dominated compressible mixing layers. Phys. Fluids 7 (10), 24892495.CrossRefGoogle Scholar