Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T06:21:34.809Z Has data issue: false hasContentIssue false

Laboratory observations of mean flows under surface gravity waves

Published online by Cambridge University Press:  05 February 2007

S. G. MONISMITH
Affiliation:
Environmental Fluid Mechanics Laboratory, Stanford University Stanford, CA 94305-4020, USA Institut de Mécanique des Fluides de Toulouse, UMR-CNRS-INPT-UPS 5502, Toulouse 31400, France
E. A. COWEN
Affiliation:
Department of Civil andEnvironmental Engineering Cornell University, Ithaca, NY 14853, USA
H. M. NEPF
Affiliation:
Parsons Laboratory, MIT, Cambridge MA 02139, USA
J. MAGNAUDET
Affiliation:
Institut de Mécanique des Fluides de Toulouse, UMR-CNRS-INPT-UPS 5502, Toulouse 31400, France
L. THAIS
Affiliation:
Laboratoire de Mécanique de Lille, UMR-CNRS 8107, Polytech'Lille, Université de Lille I, Villeneuve D'Ascq, Cedex 59655, France

Abstract

In this paper we present mean velocity distributions measured in several different wave flumes. The flows shown involve different types of mechanical wavemakers, channels of differing sizes, and two different end conditions. In all cases, when surface waves, nominally deep-water Stokes waves, are generated, counterflowing Eulerian flows appear that act to cancel locally, i.e. not in an integral sense, the mass transport associated with the Stokes drift. No existing theory of wave–current interactions explains this behaviour, although it is symptomatic of Gerstner waves, rotational waves that are exact solutions to the Euler equations. In shallow water (kH ≈ 1), this cancellation of the Stokes drift does not hold, suggesting that interactions between wave motions and the bottom boundary layer may also come into play.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, D. G. & McIntyre, M. E. 1978 An exact theory of waves on a Lagrangian mean flow. J. Fluid Mech. 89, 609646.CrossRefGoogle Scholar
Beach Erosion Board 1941 A study of progressive oscillatory waves in water. Tech. Rep. 1, Beach Erosion Board, Office of the Chief of Engineers. US Government Printing Office, Washington DC, 39 pp.Google Scholar
Cheung, T. K. & Street, R. L 1988 Turbulent layers in the water at an air–water interface. J. Fluid Mech. 194, 133151.CrossRefGoogle Scholar
Coehlo, S. 1989 The production of uniformly sheared streams by means of double gauzes in wind tunnels: a mathematical analysis. Exps. Fluids 8, 2532.Google Scholar
Cowen, E. A. & Monismith, S. G. 1997 An hybrid digital particle tracking velocimetry technique. Exps. Fluids 22, 199211.CrossRefGoogle Scholar
Cowen, E. A., Monismith, S. G. & Koseff, J. R. 1996 Digital particle tracking measurements very near a free surface. In Air Water Transfer. Selected Papers from the Third Intl Symp. on Air–Water Gas Transfer (ed. Jähne, B. & Monahan, E. C.), pp. 135144. Aeon.Google Scholar
Dean, R. G. & Dalrymple, R. A. 1991 Water Wave Mechanics for Engineers and Scientists, 2nd edn. World Scientific.CrossRefGoogle Scholar
Groeneweg, J. & Battjes, J. A. 2003 Three dimensional wave effects on a steady current. J. Fluid Mech. 478, 325343.CrossRefGoogle Scholar
Groeneweg, J. & Klopman, G. 1998 Changes of the mean velocity profiles in the combined wave–current motion described in a GLM formulation. J. Fluid Mech. 370, 271296.CrossRefGoogle Scholar
Gjøsund, S. H. 2000 Kinematics in regular and irregular waves based on a Lagrangian formulation. PhD thesis, Norwegian University of Science & Technology.Google Scholar
Gjøsund, S. H. 2003 A Lagrangian model for irregular waves and wave kinematics. J. Offshore Mech. Arctic Engng 125, 94102.CrossRefGoogle Scholar
Huang, Z. & Mei, C. C. 2003 Effects of surface waves on a turbulent current over a smooth or rough seabed. J. Fluid Mech. 497, 253287.CrossRefGoogle Scholar
Jiang, J. Y. & Street, R. L. S. 1991 Modulated flows beneath wind-ruffled, mechanically generated waves. J. Geophys. Res. (Oceans) 96, 27112721.CrossRefGoogle Scholar
Kemp, P. & Simons, R. 1982 The interaction between waves and a turbulent current: waves propagating with the current. J. Fluid Mech. 116, 227250.CrossRefGoogle Scholar
Kimmel, S. J. 1994 Turbulent structures in a wavy flow. Engineer Degree thesis, Dept of Mech. Engng, Stanford University.Google Scholar
Kinsman, B. 1984 Wind Waves: Their Generation and Propagation on the Ocean's Surface. Dover.Google Scholar
Klopman, G. 1994 Vertical structure of flow due to waves and currents. Prog. Rep. Delft Hydraul. H 840.32, Part 2.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Law, A. W. K. 1999 Wave-induced surface drift of an inextensible thin film. Ocean Engng 26, 11451168.CrossRefGoogle Scholar
Leibovich, S. On wave–current interaction theories of Langmuir circulations. J. Fluid Mech. 99, 715724.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1953 Mass transport in water waves. Phil. Trans. R. Soc. Lond. A 245, 535581.Google Scholar
Longuet-Higgins, M. S. 1960 Mass transport in the boundary layer at a free oscillating surface J. Fluid Mech. 8, 293306.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1992 Capillary rollers and bores. J. Fluid Mech. 240, 659679.CrossRefGoogle Scholar
Longuet-Higgins, M. S. & Stewart, R. 1962 Radiation stress and mass transport in gravity waves with application to ‘surf beats’. J. Fluid Mech. 13, 481504.CrossRefGoogle Scholar
McIntyre, M. E. 1981 On the ‘wave momentum’ myth. J. Fluid Mech. 106, 331347.CrossRefGoogle Scholar
Magnaudet, J. & Masbernat, L. 1990 Interaction des vagues de vent avec le courant moyen et la turbulence. C.R. Acad. Sci. Paris 311, Ser. II, 14611466.Google Scholar
Matsunaga, N., Takehara, K., & Awaya, Y. 1994 The offshore vortex train. J. Fluid Mech. 236, 113124.CrossRefGoogle Scholar
Mellor, G. 2003 The three-dimensional current and surface wave equations. J. Phys. Ocean. 33, 19781989.2.0.CO;2>CrossRefGoogle Scholar
Melville, W. K. 1982 The instability and breaking of deep water waves. J. Fluid Mech. 115, 165185.CrossRefGoogle Scholar
Melville, W. K. 1983 Wave modulation and breakdown. J. Fluid Mech. 128, 489506.CrossRefGoogle Scholar
Monismith, S. G., & Fong, D. A. 2004 A note on the transport of scalars and organisms by surface waves. Limnol. Ocean. 49, 12141219.CrossRefGoogle Scholar
Monismith, S. G. & Magnaudet, J. 1998 On wavy mean flows, strain, turbulence and Langmuir cells. IUTAM Symp. on Physical Limnology (ed. J. Imberger), AGU Monograph, pp. 101–110.Google Scholar
Nepf, H. M. 1992 The production and mixing effects of Langmuir circulations. PhD thesis, Dept of Civil Engng, Stanford University.Google Scholar
Nepf, H. M. & Monismith, S. G. 1994 Wave dispersion on a sheared current. Appl. Ocean Res. 16, 313315.CrossRefGoogle Scholar
Nepf, H. M., Cowen, E. A., Kimmel, S. J. & Monismith, S. G. 1995 Longitudinal vortices under breaking waves. J. Geophys. Res. (Oceans) 100, 16 21116 221.CrossRefGoogle Scholar
Russell, R. C. & Osorio, J. D. C. 1958 An experimental investigation of drift profiles in a closed channel. Proc. Sixth Conf. Coastal Engng, Florida, Dec. 1957 (ed. Johnson, J. W.), pp. 171–183.Google Scholar
Smith, J. A. 2006 Wave groups, Stokes drift and Eulerian response. J. Phys. Oceanogr. (in press).Google Scholar
Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441–55.Google Scholar
Swan, C. 1990a Convection within an experimental wave flume. J. Hydraul. Res. 28, 273282.CrossRefGoogle Scholar
Swan, C. 1990b Experimental study of waves on a strongly sheared current profile. In Proc. 22nd Intl Coastal Engng Conf. pp. 489–502.Google Scholar
Teixeira, M. A. C. & Belcher, S. E. 2003 On the distortion of turbulence by a progressive surface wave. J. Fluid Mech. 458, 229267.CrossRefGoogle Scholar
Thais, L. 1994 Contribution a l'étude du mouvement turbulent sous des vagues de surface cisaillées par le vent. Thése Inst. Nat. Polytech. de Toulouse, Toulouse.Google Scholar
Thais, L. & Magnaudet, J. 1996 Turbulence structure beneath surface gravity waves sheared by the wind. J. Fluid Mech. 328, 313344.CrossRefGoogle Scholar
Wiegel, R. L. 1964 Oceanographical Engineering. Prentice-Hall.Google Scholar