Published online by Cambridge University Press: 21 April 2006
We find certain exact solutions of Jeffery-Hamel type for the boundary-layer equations for film flow over certain beds. If β is the angle of the bed with the horizontal and S is the arclength these beds have equation sin β = (const.)S−3, and allow a description of flows on concave and convex beds. The velocity profiles are markedly different from the semi-Poiseuille flow on a plane bed.
We also find a class of beds in which the Jeffery-Hamel flows appear as a first approximation throughout the flow field, which is infinite in streamwise extent. Since the parameter γ specifying the Jeffery-Hamel flow varies in the streamwise direction this allows a description of flows over curved beds which are slowly varying, as described in the theory, in such a way that the local approximation is that Jeffery-Hamel flow with the local value of γ. This allows the description of flows with separation and reattachment of the main stream in some cases.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.