Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T02:45:06.408Z Has data issue: false hasContentIssue false

Isobath variation and trapping of continental shelf waves

Published online by Cambridge University Press:  01 May 2012

G. Kaoullas*
Affiliation:
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
E. R. Johnson
Affiliation:
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
*
Email address for correspondence: [email protected]

Abstract

Since Trösch (Proceedings of the 4th International Conference on Applied Numerical Modeling, Tainan, Taiwan, 1984 (ed. H. M. Hsia, Y. L. Chou, S. Y. Wang & S. J. Hsieh) Science and Technology Series, vol. 63, 1986, pp. 307–311. American Astronautical Society) found trapped sub-inertial oscillations in computations of low-frequency variability in the Lake of Lugano, models of trapping have generally considered evenly spaced isobaths parallel to shorelines with approximate boundary conditions at any shelf–ocean boundary. Here an asymptotic analysis for slowly varying topography and accurate spectral computations demonstrate trapping on non-rectilinear shelves. It is shown that changes in any of three factors, isobath curvature, distance from the coast and the shelf-break, and the slope at the shelf-break, are sufficient on their own to give trapping. Continental shelves that abut smoothly onto the open ocean are considered thus avoiding the shelf–ocean boundary condition approximation and allowing the accuracy of previous approximations to be assessed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th edn. Dover.Google Scholar
2. Aslanyan, A., Parnovski, L. & Vassiliev, D. 2000 Complex resonances in acoustic waveguides. Quart. J. Mech. Appl. Maths 53 (3), 429447.CrossRefGoogle Scholar
3. Boyd, J. P. 2000 Chebyshev and Fourier Spectral Methods. Dover.Google Scholar
4. Brink, K. H. 1991 Coastal-trapped waves and wind-driven currents over the continental shelf. Annu. Rev. Fluid Mech. 23 (1), 389412.CrossRefGoogle Scholar
5. Buchwald, V. T. & Adams, J. K. 1968 The propagation of continental shelf waves. Proc. R. Soc. Lond. A 305 (1481).Google Scholar
6. Chapman, D. C. 1983 On the influence of stratification and continental shelf and slope topography on the dispersion of subinertial coastally trapped waves. J. Phys. Oceanogr. 13 (9), 16411652.2.0.CO;2>CrossRefGoogle Scholar
7. Davies, E. B. & Parnovski, L. 1998 Trapped modes in acoustic waveguides. Quart. J. Mech. Appl. Maths 51 (3), 477492.Google Scholar
8. Dittrich, J. & Kriz, J. 2002 Curved planar quantum wires with Dirichlet and Neumann boundary conditions. J. Phys. A 35 (20), L269L275.Google Scholar
9. Duclos, P. & Exner, P. 1995 Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7, 73102.CrossRefGoogle Scholar
10. Evans, D. V., Levitin, M. & Vassiliev, D. 1994 Existence theorems for trapped modes. J. Fluid Mech. 261, 2131.CrossRefGoogle Scholar
11. Exner, P. & Seba, P. 1989 Bound states in curved quantum waveguides. J. Math. Phys. 30 (11), 25742580.CrossRefGoogle Scholar
12. Gridin, D., Craster, R. V. & Adamou, A. T. I. 2005 Trapped modes in curved elastic plates. Proc. R. Soc. Lond. A 461 (2064), 11811197.Google Scholar
13. Hamon, B. V. 1962 Spectrums of mean sea level at Sydney, Coff’s Harbour, and Lord Howe Island. J. Geophys. Res. 67 (13), 51475155.CrossRefGoogle Scholar
14. Hamon, B. V. 1963 Correction to the spectrums of mean sea level at Sydney, Coff’s Harbour, and Lord Howe Island. J. Geophys. Res. 68 (15), 4635.Google Scholar
15. Huthnance, J. M. 1978 Coastal trapped waves – analysis and numerical-calculation by inverse iteration. J. Phys. Oceanogr. 8 (1), 7492.2.0.CO;2>CrossRefGoogle Scholar
16. Johnson, E. R. 1989 Topographic waves in open domains. Part 1. Boundary conditions and frequency estimates. J. Fluid Mech. 200, 6976.CrossRefGoogle Scholar
17. Johnson, E. R. & Kaoullas, G. 2011 Bay-trapped low-frequency oscillations in lakes. Geophys. Astrophys. Fluid Dyn. 105 (1), 4860.CrossRefGoogle Scholar
18. Johnson, E. R., Levitin, M. & Parnovski, L. 2006 Existence of eigenvalues of a linear operator pencil in a curved waveguide – localized shelf waves on a curved coast. SIAM J. Math. Anal. 37 (5), 14651481.Google Scholar
19. Johnson, E. R., Rodney, J. & Kaoullas, G. 2011 Trapped modes in coastal waveguides. Wave Motion 49, 212216.CrossRefGoogle Scholar
20. Kaoullas, G. & Johnson, E. R. 2010a Fast accurate computation of shelf waves for arbitrary depth profiles. Cont. Shelf Res. 30 (7), 833836.CrossRefGoogle Scholar
21. Kaoullas, G. & Johnson, E. R. 2010b Geographically localized shelf waves on curved coasts. Cont. Shelf Res. 30 (15), 17531760.Google Scholar
22. Kaplunov, J. D., Rogerson, G. A. & Tovstik, P. E. 2005 Localized vibration in elastic structures with slowly varying thickness. Quart. J. Mech. Appl. Maths 58 (Part 4), 645664.CrossRefGoogle Scholar
23. Krejčiřík, D. & Kříž, J. 2005 On the spectrum of curved planar waveguides. Publ. Res. Inst. Math. Sci. 41 (3), 757791.Google Scholar
24. Landau, L. D. & Lifshitz, E. M. 1991 Quantum Mechanics Non-Relativistic Theory: Volume 3. Butterworth-Heinemann.Google Scholar
25. LeBlond, P. H. & Mysak, L. A. 1978 Waves in the Ocean. Elsevier.Google Scholar
26. Mysak, L. A. 1980 Recent advances in shelf wave dynamics. Rev. Geophys. Space Phys. 18 (1), 211241.CrossRefGoogle Scholar
27. Nayfeh, A. H. 1993 Introduction to Perturbation Techniques. John Wiley & Sons.Google Scholar
28. Postnova, J. & Craster, R. V. 2008 Trapped modes in elastic plates, ocean and quantum waveguides. Wave Motion 45 (4), 565579.CrossRefGoogle Scholar
29. Robinson, A. R. 1964 Continental shelf waves and the response to of sea level to weather systems. J. Geophys. Res. 69 (2), 367368.CrossRefGoogle Scholar
30. Rodney, J. T. & Johnson, E. R. 2012 Localisation of coastal trapped waves by longshore variations in bottom topography. Cont. Shelf Res. 32, 130137.Google Scholar
31. Shen, J. & Wang, L.-L. 2009 Some recent advances on spectral methods for unbounded domains. Commun. Comput. Phys. 5 (2–4), 195241.Google Scholar
32. Stocker, T. & Hutter, K. 1986 One-dimensional models for topographic Rossby waves in elongated basins on the f-plane. J. Fluid Mech. 170, 435459.CrossRefGoogle Scholar
33. Stocker, T. & Hutter, K. 1987 Topographic waves in rectangular basins. J. Fluid Mech. 185, 107120.Google Scholar
34. Stocker, T. & Johnson, E. R. 1989 Topographic waves in open domains. Part 2. Bay modes and resonances. J. Fluid Mech. 200, 7793.CrossRefGoogle Scholar
35. Stocker, T. & Johnson, E. R. 1991 The trapping and scattering of topographic waves by estuaries and headlands. J. Fluid Mech. 222, 501524.Google Scholar
36. Szegö, G. 1975 Orthogonal Polynomials, vol. 23, 4th edn. American Mathematical Society Colloqium Publications.Google Scholar
37. Tang, T. 1993 The hermite spectral method for Gaussian-type functions. SIAM J. Sci. Comput. 14 (3), 594606.CrossRefGoogle Scholar
38. Trefethen, L. N. 2000 Spectral Methods in MATLAB. SIAM.Google Scholar
39. Trösch, J. 1986 Finite element calculation of topographic waves in lakes. In Proceedings of the 4th International Conference on Applied Numerical Modeling, Tainan, Taiwan, 1984 (ed. Hsia, H. M., Chou, Y. L., Wang, S. Y. & Hsieh, S. J. ), Science and Technology Series, vol. 63 , pp. 307311. American Astronautical Society.Google Scholar
40. Weideman, J. A. C. & Reddy, S. C. 2000 A MATLAB differentiation matrix suite. J. ACM 26 (4), 465519.Google Scholar