Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-20T05:51:52.400Z Has data issue: false hasContentIssue false

Intermittency and preferential transport of heat in a round jet

Published online by Cambridge University Press:  19 April 2006

R. Chevray
Affiliation:
Department of Mechanical Engineering, State University of New York, Stony Brook
N. K. Tutu
Affiliation:
Department of Mechanical Engineering, State University of New York, Stony Brook Present address: Department of Aeronautical Engineering Sciences, University of Colorado, Boulder, Colorado 80302.

Abstract

The temperature and velocity fields in a round heated jet were investigated in detail. Both conventional measurements and conditional measurements (zone averages and point averages) were performed. The probability density functions of the lengths of turbulent and non-turbulent durations were also measured. Filtered correlation measurements show that large-scale turbulent motions were responsible for the bulk of momentum and heat transport, and also that small scales were more efficient in transporting heat than in transporting momentum. In no case was heat transported further or more than momentum, however. These results are discussed in detail, particularly with regard to the entrainment. Conservation equations for turbulent-zone variables and the intermittency factor are derived and a model for some of the resulting higher-order correlations is suggested. An exact equation for the intermittency function is presented.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Champagne, F. H. & Sleicher, C. A. 1967 J. Fluid Mech. 28, 177.
Chevray, R. & Tutu, N. K. 1972 Rev. Sci. Instrum. 43, 1417.
Corrsin, S. 1943 N.A.C.A. Rep. no. W-94.
Corrsin, S. 1949 N.A.C.A. Tech. Note no. 1864.
Corrsin, S. & Kistler, A. L. 1954 N.A.C.A. Rep. no. 1244.
Corrsin, S. & Uberoi, M. S. 1950 N.A.C.A. Rep. no. 998.
Davies, A. E., Keffer, J. F. & Baines, W. D. 1975 Phys. Fluids 18, 770.
Dopazo, C. 1978 Submitted for publication.
Fiedler, H. E. 1973 2nd IUTAM–IUGG Symp. Turbulent Diffusion in Environmental Pollution, Univ. Virginia.
Fiedler, H. E. & Head, M. R. 1966 J. Fluid Mech. 25, 719.
Hinze, J. O. & Van der hegge zijnen, B. G. 1949 Appl. Sci. Res. A 1, 435461.
Jenkins, P. E. & Goldschmidt, V. W. 1976 Phys. Fluids 19, 613.
Kaplan, R. E. & Laufer, J. 1968 Proc. 12th Int. Cong. Appl. Mech. p. 236.
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 J. Fluid Mech. 41, 283325.
Kovasznay, L. S. G. & Firasat ali, S. 1974 Proc. 5th Int. Heat Transfer Conf., Tokyo, vol. 2, p. 99.
Libby, P. A. 1975 J. Fluid Mech. 68, 273.
Libby, P. A. 1976 Phys. Fluids 19, 494.
Mayer, E. & Divorky, D. 1966 A.I.A.A. J. 4, 1995.
Mobbs, F. R. 1968 J. Fluid Mech. 33, 227.
Paizis, S. T. & Schwarz, W. H. 1974 Rev. Sci. Instrum. 45, 348.
Phillips, O. M. 1972 J. Fluid Mech. 51, 97.
Sunyach, M. 1971 Thèse Dr-ès-Sc., Université de Lyon.
Taylor, G. I. 1932 Proc. Roy. Soc. A 135, 685.
Thomas, R. M. 1973 J. Fluid Mech. 57, 549.
Townsend, A. A. 1949 Austr. J. Sci. Res. A 2, 451.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.
Tutu, N. K. 1976 Ph.D. dissertation, State University of New York, Stony Brook.
Tutu, N. K. & Chevray, R. 1975 J. Fluid Mech. 71, 785.
Tutu, N. K. & Chevray, R. 1976 Rev. Sci. Instrum. 47, 163.
Wygnanski, I. & Fiedler, H. 1969 J. Fluid Mech. 38, 577.
Wygnanski, I. & Fiedler, H. 1970 J. Fluid Mech. 41, 327.