Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T12:02:40.407Z Has data issue: false hasContentIssue false

Interactions of large amplitude solitary waves in viscous fluid conduits

Published online by Cambridge University Press:  11 June 2014

Nicholas K. Lowman
Affiliation:
Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
M. A. Hoefer*
Affiliation:
Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
G. A. El
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
*
Email address for correspondence: [email protected]

Abstract

The free interface separating an exterior, viscous fluid from an intrusive conduit of buoyant, less viscous fluid is known to support strongly nonlinear solitary waves due to a balance between viscosity-induced dispersion and buoyancy-induced nonlinearity. The overtaking, pairwise interaction of weakly nonlinear solitary waves has been classified theoretically for the Korteweg–de Vries equation and experimentally in the context of shallow water waves, but a theoretical and experimental classification of strongly nonlinear solitary wave interactions is lacking. The interactions of large amplitude solitary waves in viscous fluid conduits, a model physical system for the study of one-dimensional, truly dissipationless, dispersive nonlinear waves, are classified. Using a combined numerical and experimental approach, three classes of nonlinear interaction behaviour are identified: purely bimodal, purely unimodal, and a mixed type. The magnitude of the dispersive radiation due to solitary wave interactions is quantified numerically and observed to be beyond the sensitivity of our experiments, suggesting that conduit solitary waves behave as ‘physical solitons’. Experimental data are shown to be in excellent agreement with numerical simulations of the reduced model. Experimental movies are available with the online version of the paper.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablowitz, M. J. & Haut, T. S. 2010 Asymptotic expansions for solitary gravity–capillary waves in two and three dimensions. J. Phys. A 43 (43), 434005.Google Scholar
Barcilon, V. & Richter, F. M. 1986 Nonlinear waves in compacting media. J. Fluid Mech. 164, 429448.Google Scholar
Benjamin, T. B. 1967 Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29 (3), 559592.Google Scholar
Bona, J. L., Pritchard, W. G. & Scott, L. R. 1980 Solitary-wave interaction. Phys. Fluids 23 (3), 438441.Google Scholar
Craig, W., Guyenne, P., Hammack, J., Henderson, D. & Sulem, C. 2006 Solitary water wave interactions. Phys. Fluids 18 (5), 057106.CrossRefGoogle Scholar
El, G. A. & Kamchatnov, A. M. 2005 Kinetic equation for a dense soliton gas. Phys. Rev. Lett. 95 (20), 204101.Google Scholar
Green, A. E. & Naghdi, P. M. 1976 A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78 (2), 237246.CrossRefGoogle Scholar
Harris, S. E. 2006 Painlevé analysis and similarity reductions for the magma equation. SIGMA 2, 117.Google Scholar
Helfrich, K. R. & Whitehead, J. A. 1990 Solitary waves on conduits of buoyant fluid in a more viscous fluid. Geophys. Astrophys. Fluid Dyn. 51 (1–4), 3552.Google Scholar
Hirota, R. 1971 Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27 (18), 11921194.Google Scholar
Korteweg, D. J. & de Vries, G. 1895 On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. Ser. 5 39 (240), 422443.Google Scholar
Lax, P. D. 1968 Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Maths 21 (5), 467490.Google Scholar
Li, W.2012 Amplification of solitary waves along a vertical wall. PhD thesis, Oregon State University, Graduation Date: 2013.Google Scholar
Lowman, N. K. & Hoefer, M. A. 2013a Dispersive hydrodynamics in viscous fluid conduits. Phys. Rev. E 88 (2), 023016.Google Scholar
Lowman, N. K. & Hoefer, M. A. 2013b Dispersive shock waves in viscously deformable media. J. Fluid Mech. 718, 524557.Google Scholar
Miles, J. W. 1977 Obliquely interacting solitary waves. J. Fluid Mech. 79 (1), 157169.Google Scholar
Mirie, R. M. & Su, C. H. 1982 Collisions between two solitary waves. Part 2. A numerical study. J. Fluid Mech. 115, 475492.CrossRefGoogle Scholar
Olson, P. & Christensen, U. 1986 Solitary wave propagation in a fluid conduit within a viscous matrix. J. Geophys. Res. 91 (B6), 63676374.Google Scholar
Ono, H. 1975 Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39 (4), 10821091.Google Scholar
Pelinovsky, E. N., Shurgalina, E. G., Sergeeva, A. V., Talipova, T. G., El, G. A. & Grimshaw, R. H. J. 2013 Two-soliton interaction as an elementary act of soliton turbulence in integrable systems. Phys. Lett. A 377, 272275.CrossRefGoogle Scholar
Scott, D. R. & Stevenson, D. J. 1984 Magma solitons. Geophys. Res. Lett. 11 (11), 11611164.Google Scholar
Scott, D. R., Stevenson, D. J. & Whitehead, J. A. 1986 Observations of solitary waves in a viscously deformable pipe. Nature 319 (6056), 759761.Google Scholar
Serre, F. 1953 Contribution à l’étude des écoulements permanents et variables dans les canaux. La Houille Blanche 8, 374388.Google Scholar
Simpson, G. & Weinstein, M. I. 2008 Asymptotic stability of ascending solitary magma waves. SIAM J. Math. Anal. 40 (4), 13371391.Google Scholar
Su, C. H. & Gardner, C. S. 1969 Korteweg–de Vries equation and generalizations. Part 3. Derivation of the Korteweg–de Vries equation and Burgers equation. J. Math. Phys. 10 (3), 536539.CrossRefGoogle Scholar
Tanaka, M. 1986 The stability of solitary waves. Phys. Fluids 29 (3), 650655.Google Scholar
Weidman, P. D. & Maxworthy, T. 1978 Experiments on strong interactions between solitary waves. J. Fluid Mech. 85 (3), 417431.Google Scholar
Whitehead, J. A. & Helfrich, K. R. 1986 The Korteweg–de Vries equation from laboratory conduit and magma migration equations. Geophys. Res. Lett. 13 (6), 545546.Google Scholar
Whitehead, J. A. & Luther, D. S. 1975 Dynamics of laboratory diapir and plume models. J. Geophys. Res. 80 (5), 705717.CrossRefGoogle Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves, Pure and Applied Mathematics. Wiley.Google Scholar
Zabusky, N. J. & Kruskal, M. D. 1965 Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15 (6), 240243.Google Scholar

Lowman et al. supplementary movie

Rescaled bimodal interaction

Download Lowman et al. supplementary movie(Video)
Video 3.5 MB

Lowman et al. supplementary movie

Bimodal interaction

Download Lowman et al. supplementary movie(Video)
Video 8.5 MB

Lowman et al. supplementary movie

Bimodal interaction, zoomed in and rescaled. Corresponds to the bimodal interaction in Fig. 4.

Download Lowman et al. supplementary movie(Video)
Video 2.4 MB

Lowman et al. supplementary movie

Bimodal interaction, zoomed in and unscaled. Corresponds to the bimodal interaction in Fig. 4.

Download Lowman et al. supplementary movie(Video)
Video 7.7 MB

Lowman et al. supplementary movie

Intermediate interaction, zoomed in and rescaled. Corresponds to the intermediate interaction in Fig. 4.

Download Lowman et al. supplementary movie(Video)
Video 1.1 MB

Lowman et al. supplementary movie

Intermediate interaction, zoomed in and unscaled. Corresponds to the intermediate interaction in Fig. 4.

Download Lowman et al. supplementary movie(Video)
Video 3.3 MB

Lowman et al. supplementary movie

Unimodal interaction, zoomed in and rescaled. Corresponds to the unimodal interaction in Fig. 4.

Download Lowman et al. supplementary movie(Video)
Video 1.3 MB

Lowman et al. supplementary movie

Unimodal interaction, zoomed in and unscaled. Corresponds to the unimodal interaction in Fig. 4.

Download Lowman et al. supplementary movie(Video)
Video 3.2 MB