Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T16:25:02.917Z Has data issue: false hasContentIssue false

Interaction of two-dimensional spots with a heat releasing/absorbing shock wave: linear interaction approximation results

Published online by Cambridge University Press:  28 May 2019

G. Farag
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 UMR 7340, Marseille, France
P. Boivin*
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 UMR 7340, Marseille, France
P. Sagaut
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 UMR 7340, Marseille, France
*
Email address for correspondence: [email protected]

Abstract

The canonical interaction between a two-dimensional weak Gaussian disturbance (entropy spot, density spot, weak vortex) with an exothermic/endothermic planar shock wave is studied via the linear interaction approximation. To this end, a unified framework based on an extended Kovásznay decomposition that simultaneously accounts for non-acoustic density disturbances along with a poloidal–toroidal splitting of the vorticity mode and for heat release is proposed. An extended version of Chu’s definition for the energy of disturbances in compressible flows encompassing multi-component mixtures of gases is also proposed. This new definition precludes spurious non-normal phenomena when computing the total energy of extended Kovásznay modes. Detailed results are provided for three cases, along with fully general expressions for mixed solutions that combine incoming vortical, entropy and density disturbances.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdikamalov, E., Huete, C., Nussupbekov, A. & Berdibek, S. 2018 Turbulence generation by shock-acoustic-wave interaction in core-collapse supernovae. Particles 1 (1), 97110.Google Scholar
Chu, B.-T. 1965 On the energy transfer to small disturbances in fluid flow (part I). Acta Mechanica 1 (3), 215234.Google Scholar
Chu, B.-T. & Kovásznay, L. S. G. 1958 Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3 (5), 494514.Google Scholar
Fabre, D., Jacquin, L. & Sesterhenn, J. 2001 Linear interaction of a cylindrical entropy spot with a shock. Phys. Fluids 13 (8), 24032422.Google Scholar
George, K. J. & Sujith, R. I. 2011 On chu’s disturbance energy. J. Sound Vib. 330 (22), 52805291.Google Scholar
Griffond, J. 2005 Linear interaction analysis applied to a mixture of two perfect gases. Phys. Fluids 17 (8), 086101.Google Scholar
Griffond, J. 2006 Linear interaction analysis for Richtmyer–Meshkov instability at low Atwood numbers. Phys. Fluids 18 (5), 054106.Google Scholar
Griffond, J. & Soulard, O. 2012 Evolution of axisymmetric weakly turbulent mixtures interacting with shock or rarefaction waves. Phys. Fluids 24 (11), 115108.Google Scholar
Griffond, J., Soulard, O. & Souffland, D. 2010 A turbulent mixing reynolds stress model fitted to match linear interaction analysis predictions. Phys. Scr. 2010 (T142), 014059.Google Scholar
Huete, C. & Abdikamalov, E. 2019 Response of nuclear-dissociating shocks to vorticity perturbations. Phys. Scr., http://iopscience.iop.org/10.1088/1402-4896/ab0228.Google Scholar
Huete, C., Abdikamalov, E. & Radice, D. 2018 The impact of vorticity waves on the shock dynamics in core-collapse supernovae. Mon. Not. R. Astron. Soc. 475 (3), 33053323.Google Scholar
Huete, C., Sánchez, A. L. & Williams, F. A. 2013 Theory of interactions of thin strong detonations with turbulent gases. Phys. Fluids 25 (7), 076105.Google Scholar
Huete, C., Sánchez, A. L. & Williams, F. A. 2014 Linear theory for the interaction of small-scale turbulence with overdriven detonations. Phys. Fluids 26 (11), 116101.Google Scholar
Huete, C., Wouchuk, J. G., Canaud, B. & Velikovich, A. L. 2012a Analytical linear theory for the shock and re-shock of isotropic density inhomogeneities. J. Fluid Mech. 700, 214245.Google Scholar
Huete, C., Wouchuk, J. G. & Velikovich, A. L. 2012b Analytical linear theory for the interaction of a planar shock wave with a two-or three-dimensional random isotropic acoustic wave field. Phys. Rev. E 85 (2), 026312.Google Scholar
Kovasznay, L. S. G. 1953 Turbulence in supersonic flow. J. Aero. Sci. 20 (10), 657674.Google Scholar
Lee, S., Lele, S. K. & Moin, P. 1993 Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251, 533562.Google Scholar
Lee, S., Lele, S. K. & Moin, P. 1997 Interaction of isotropic turbulence with shock waves: effect of shock strength. J. Fluid Mech. 340, 225247.Google Scholar
de Lira, C. H. R. 2010 Turbulence generation by a shock wave interacting with a random density inhomogeneity field. Phys. Scr. 2010 (T142), 014022.Google Scholar
Mahesh, K., Lee, S., Lele, S. K. & Moin, P. 1995 The interaction of an isotropic field of acoustic waves with a shock wave. J. Fluid Mech. 300, 383407.Google Scholar
Mahesh, K., Lele, S. K. & Moin, P. 1997 The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J. Fluid Mech. 334, 353379.Google Scholar
Moore, F. K.1953 Unsteady oblique interaction of a shock wave with a plane disturbance. NACA Tech. Rep., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930083773.pdf.Google Scholar
Narita, S. 1973 The radiative energy loss from the shock front. Prog. Theoret. Phys. 49 (6), 19111931.Google Scholar
Quadros, R., Sinha, K. & Larsson, J. 2016 Turbulent energy flux generated by shock/homogeneous-turbulence interaction. J. Fluid Mech. 796, 113157.Google Scholar
Ribner, H. S.1954a Shock-turbulence interaction and the generation of noise. NACA Tech. Rep. 3255, https://apps.dtic.mil/dtic/tr/fulltext/u2/a278325.pdf.Google Scholar
Ribner, H. S.1954b Convection of a pattern of vorticity through a shock wave. NACA Tech. Rep. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930092192.pdf.Google Scholar
Ribner, H. S.1959 The sound generated by interaction of a single vortex with a shock wave. Tech. Rep. University of Toronto.Google Scholar
Ryu, J. & Livescu, D. 2014 Turbulence structure behind the shock in canonical shock–vortical turbulence interaction. J. Fluid Mech. 756, R1.Google Scholar
Sagaut, P. & Cambon, C. 2018 Homogeneous Turbulence Dynamics, 2nd edn. Springer.Google Scholar
Sinha, K. 2012 Evolution of enstrophy in shock/homogeneous turbulence interaction. J. Fluid Mech. 707, 74110.Google Scholar
Sinha, K., Mahesh, K. & Candler, G. V. 2003 Modeling shock unsteadiness in shock/turbulence interaction. Phys. Fluids 15 (8), 22902297.Google Scholar
Soulard, O., Griffond, J. & Souffland, D. 2012 Pseudocompressible approximation and statistical turbulence modeling: Application to shock tube flows. Phys. Rev. E 85 (2), 026307.Google Scholar
Williams, F. A. 1985 Combustion Theory, 2nd edn. Cummings Publishing Company.Google Scholar
Wouchuk, J. G., de Lira, C. H. R. & Velikovich, A. L. 2009 Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field. Phys. Rev. E 79 (6), 066315.Google Scholar
Zeldovich, Y. B.1950 On the theory of the propagation of detonation in gaseous systems. NACA Tech. Rep., https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930093969.pdf.Google Scholar
ZelDovich, Y. B. & Raizer, Y. P. 2012 Physics of Shock Waves and Gigh-Temperature Hydrodynamic Phenomena. Courier Corporation.Google Scholar
Zhao, L., Wang, F., Gao, H., Tang, J. & Yuan, Y. 2008 Shock wave of vapor-liquid two-phase flow. Front. Energy Power Engng. China 2 (3), 344347.Google Scholar