Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-07T10:33:14.432Z Has data issue: false hasContentIssue false

The interaction between two oppositely travelling, horizontally offset, antisymmetric quasi-geostrophic hetons

Published online by Cambridge University Press:  04 April 2016

Jean N. Reinaud*
Affiliation:
Mathematical Institute, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
Xavier Carton
Affiliation:
Laboratoire de Physique des Océans, UFR Sciences, UBO/UEB, 6 Avenue le Gorgeu, 29200 Brest, France
*
Email address for correspondence: [email protected]

Abstract

We investigate numerically the nonlinear interactions between hetons. Hetons are baroclinic structures consisting of two vortices of opposite sign lying at different depths. Hetons are long-lived. They most often translate (they can sometimes rotate) and therefore they can noticeably contribute to the transport of scalar properties in the oceans. Heton interactions can interrupt this translation and thus this transport, by inducing a reconfiguration of interacting hetons into more complex baroclinic multipoles. More specifically, we study here the general case of two hetons, which collide with an offset between their translation axes. For this purpose, we use the point vortex theory, the ellipsoidal vortex model and direct simulations in the three-dimensional quasi-geostrophic contour surgery model. More specifically, this paper shows that there are in general three regimes for the interaction. For small horizontal offsets between the hetons, their vortices recombine as same-depth dipoles which escape at an angle. The angle depends in particular on the horizontal offset. It is a right angle for no offset, and the angle is shallower for small but finite offsets. The second limiting regime is for large horizontal offsets where the two hetons remain the same hetonic structures but are deflected by the weaker mutual interaction. Finally, the intermediate regime is for moderate offsets. This is the regime where the formation of a metastable quadrupole is possible. The formation of this quadrupole greatly restrains transport. Indeed, it constrains the vortices to reside in a closed area. It is shown that the formation of such structures is enhanced by the quasi-periodic deformation of the vortices. Indeed, these structures are nearly unobtainable for singular vortices (point vortices) but may be obtained using deformable, finite-core vortices.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carton, X. 2001 Hydrodynamical modeling of oceanic vortices. Surv. Geophys. 22 (3), 179263.CrossRefGoogle Scholar
Carton, X., Flierl, G. R., Perrot, X., Meunier, T. & Sokolovskiy, M. A. 2010a Explosive instability of geostrophic vortices. Part 1: Baroclinic instability. Theor. Comput. Fluid Dyn. 24, 125130.Google Scholar
Carton, X., Meunier, T., Flierl, G. R., Prrot, X. & Sokolovskiy, M. A. 2010b Explosive instability of geostrophic vortices. Part 2: Parametric instability. Theor. Comput. Fluid Dyn. 24, 131135.Google Scholar
Chao, S.-Y. & Shaw, P.-T. 1999 Close interactions between two pairs of heton-like vortices under sea ice. J. Geophys. Res. 104, 2359123601.CrossRefGoogle Scholar
Charney, J. G. 1947 The dynamics of long waves in a baroclinic westerly current. Meteorology 5 (5), 135162.Google Scholar
Chelton, D. B., Schlax, M. G. & Samelson, R. M. 2011 Global observations of nonlinear mesocale eddies. Prog. Oceanogr. 91, 167216.Google Scholar
Chelton, D. B., Schlax, M. G., Samelson, R. M. & de Szoeke, R. A. 2007 Global observations of large oceanic eddies. Geophys. Res. Lett. 34, L15606.CrossRefGoogle Scholar
Chérubin, L., Serpette, A., Carton, X., Paillet, J., Connan, O., Rousselet, B., Le Cann, P., Le Corre, T. & Labasque, D. 1997 Descriptive analysis of the hydrology and currents on the Iberian shelf from Gibraltar to Cape Finisterre: preliminary results from the Semane and Interafos experiments. Ann. Hydrogr. 21, 521.Google Scholar
Dritschel, D. G. 1989 Contour dynamics and contour surgery: numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows. Comput. Phys. Rev. 10, 77146.CrossRefGoogle Scholar
Dritschel, D. G. 2002 Vortex merger in rotating stratified flows. J. Fluid Mech. 455, 83101.Google Scholar
Dritschel, D. G. & Saranavan, R. 1994 Three-dimensional quasi-geostrophic contour dynamics, with an application to stratospheric vortex dynamics. Q. J. R. Meteorol. Soc. 120, 12671297.Google Scholar
Dritschel, D. G., Reinaud, J. N. & McKiver, W. J. 2004 The quasi-geostrophic ellipsoidal model. J. Fluid Mech. 505, 201223.Google Scholar
Dritschel, D. G. & Vìudez, A. 2003 A balanced approach to modelling rotating stably-stratified geophysical flows. J. Fluid Mech. 488, 123250.CrossRefGoogle Scholar
Ebbesmeyer, C. C., Taft, B. A., McWilliams, J. C., Shen, C. Y., Riser, S. C., Rossby, H. T., Biscaye, P. E. & Östlund, H. G. 1986 Detection, structure and origin of extreme anomalies in a Western Atlantic Oceanographic section. J. Phys. Oceanogr. 16, 591612.2.0.CO;2>CrossRefGoogle Scholar
Flierl, G. R. 1988 On the instability of geostrophic vortices. J. Fluid Mech. 197, 339388.CrossRefGoogle Scholar
Flierl, G. R., Carton, X. & Messager, C. 1999 Vortex fomation by unstable oceanic jets. Eur. Ser. Appl. Ind. Math. 7, 137150.Google Scholar
Gryanik, V. M. 1983a Dynamics of singular geostrophic vortices in a two-layer model of the atmosphere (ocean). Izv. Atmos. Ocean. Phys. 19, 171179.Google Scholar
Gryanik, V. M. 1983b Dynamics of localized perturbations on vortex charges in a baroclinic fluid. Izv. Atmos. Ocean. Phys. 19, 347352.Google Scholar
Gryanik, V. M., Sokolovskiy, M. A. & Verron, J. 2006 Dynamics of heton-like vortices. Regular Chaotic Dyn. 11, 383434.Google Scholar
von Hardenberg, J., McWilliams, J. C., Provenzale, A., Shchpetkin, A. & Weiss, J. B. 2000 Vortex merging in quasi-geostrophic flows. J. Fluid Mech. 412, 331353.Google Scholar
Helfrich, K. & Send, U. 1988 Finite-amplitude evolution of two-layer geostrophic vortices. J. Fluid Mech. 197, 331348.Google Scholar
Hogg, N. G. & Stommel, H. M. 1985 The heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat flow. Proc. R. Soc. Lond. A 397, 120.Google Scholar
Kizner, Z. I. 1984 Rossby solitons with axially symmetric baroclinic modes. Trans. USSR Acad. Sci. 275, 211214.Google Scholar
Kizner, Z. 2006 Stability and transitions of hetonic quartets and baroclinic modons. Phys. Fluids 18, 056601.Google Scholar
Kizner, Z., Berson, D. & Khvoles, R. 2002 Baroclinic modon equilibria on the beta-plane: stability and transitions. J. Fluid Mech. 468, 239270.Google Scholar
Kizner, Z., Berson, D. & Khvoles, R. 2003 Non-circular baroclinic beta-plane modons: constructing stationary solutions. J. Fluid Mech. 489, 199228.Google Scholar
Kozlov, V. F., Makarov, V. G. & Sokolovskiy, M. A. 1986 Numerical model of the baroclinic instability of axially symmetric eddies in two-layer ocean. Izv. Atmos. Ocean. Phys. 22, 674678.Google Scholar
L’Hegaret, P., Carton, X., Ambar, I., Menesguen, C., Hua, B. L., Chérubin, L., Aguiar, A., Le Cann, B., Daniault, N. & Serra, N. 2014 Evidence of Mediterranean water dipole collision in the Gulf of Cadiz. J. Geophys. Res. 119 (8), 53375359.CrossRefGoogle Scholar
Reinaud, J. N. 2015 On the stability of continuously stratified quasi-geostrophic hetons. Fluid Dyn. Res. 47, 035510.CrossRefGoogle Scholar
Reinaud, J. N. & Carton, X. 2009 The stability and non-linear evolution of quasi-geostrophic hetons. J. Fluid Mech. 636, 109135.Google Scholar
Reinaud, J. N. & Carton, X. 2015a Head on collision between two continuously stratified quasi-geostrophic hetons. J. Fluid Mech. 779, 144180.Google Scholar
Reinaud, J. N. & Carton, X. 2015b Existence, stability and formation of baroclinic tripoles in quasi-geostrophic flows. J. Fluid Mech. 785, 130.Google Scholar
Reinaud, J. N. & Dritschel, D. G. 2002 The merger of vertically offset quasi-geostrophic vortices. J. Fluid Mech. 469, 287315.Google Scholar
Reinaud, J. N. & Dritschel, D. G. 2005 The critical merger distance between two co-rotating quasi-geostrophic vortices. J. Fluid Mech. 522, 357381.CrossRefGoogle Scholar
Reinaud, J. N. & Dritschel, D. G. 2009 Destructive interactions between two counter-rotating quasi-geostrophic vortices. J. Fluid Mech. 639, 195211.CrossRefGoogle Scholar
Sokolovskiy, M. A. 1997 Stability analysis of the axisymmetric three-layer vortex. Izv. Atmos. Ocean. Phys. 33, 1626.Google Scholar
Sokolovskiy, M. A. & Carton, X. 2010 Baroclinic multipole formation from heton interaction. Fluid Dyn. Res. 42, 045501.Google Scholar
Sokolovskiy, M. A. & Verron, J. 2000 Finite-core hetons: stability and interactions. J. Fluid Mech. 423, 127154.CrossRefGoogle Scholar
Sokolovskiy, M. A. & Verron, J. 2014 Dynamics of Vortex Structures in a Stratified Rotating Fluid, Atmospheric and Oceanographic Sciences Library, vol. 47. Springer.Google Scholar
Valcke, S. & Verron, J. 1993 On interactions between two finite-core hetons. Phys. Fluids A 5, 20582060.Google Scholar
Vallis, C. 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press.CrossRefGoogle Scholar
Vìudez, A. & Dritschel, D. G. 2002 An explicit potential vorticity conserving approach to modelling nonlinear internal gravity waves. J. Fluid Mech. 458, 75101.Google Scholar
Young, W. R. 1985 Some interactions between a small number of baroclinic, geostrophic vortices. Geophys. Astrophys. Fluid Dyn. 33, 3561.Google Scholar
Zhang, Z., Wang, W. & Qiu, B. 2014 Oceanic mass transport by mesoscale eddies. Science 345, 322324.CrossRefGoogle ScholarPubMed