Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-18T14:26:34.796Z Has data issue: false hasContentIssue false

The instability of non-monotonic drag laws

Published online by Cambridge University Press:  13 September 2024

Timour Radko*
Affiliation:
Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA
*
 Email address for correspondence: [email protected]

Abstract

A series of recent studies has indicated that the component of the bottom drag caused by irregular small-scale topography in the ocean varies non-monotonically with the flow speed. The roughness-induced forcing increases with the speed of relatively slow abyssal currents but, somewhat counterintuitively, starts to decrease when flows are sufficiently swift. This reduction in drag at high speeds leads to the instability of laterally uniform currents, and the resulting evolutionary patterns are explored using numerical and analytical methods. The drag-law instability manifests in the spontaneous emergence of parallel jets, aligned in the direction of the basic flow and separated by relatively quiescent regions. We hypothesize that the mechanisms identified in this investigation could play a role in the dynamics of zonal striations commonly observed in the ocean.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbic, B.K. & Scott, R.B. 2008 On quadratic bottom drag, geostrophic turbulence, and oceanic mesoscale eddies. J. Phys. Oceanogr. 38, 84103.CrossRefGoogle Scholar
Baldwin, M., Rhines, P., Huang, H.-P. & McIntyre, M. 2007 The jet-stream conundrum. Science 315, 467468.CrossRefGoogle ScholarPubMed
Balmforth, N.J., Llewellyn Smith, S.G. & Young, W.R. 1998 Dynamics of interfaces and layers in a stratified turbulent fluid. J. Fluid Mech. 355, 329358.CrossRefGoogle Scholar
Berloff, P. & Kamenkovich, I. 2019 Dynamics of baroclinic multiple zonal jets. In Zonal Jets: Phenomenology, Genesis, Physics (ed. B. Galperin & P. Read). Cambridge University Press.CrossRefGoogle Scholar
Chassignet, E.P. & Xu, X. 2017 Impact of horizontal resolution (1/12° to 1/50°) on gulf stream separation, penetration, and variability. J. Phys. Oceanogr. 47, 19992021.CrossRefGoogle Scholar
Chassignet, E.P. & Xu, X. 2021 On the importance of high-resolution in large-scale ocean models. Adv. Atmos. Sci. 38, 16211634.CrossRefGoogle Scholar
Dritschel, D. & McIntyre, M.E. 2008 Multiple jets as PV staircases: the Phillips effect and resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855874.CrossRefGoogle Scholar
Ekman, V.W. 1905 On the influence of the Earth's rotation on ocean currents. Arch. Math. Astron. Phys. 2, 152.Google Scholar
Goff, J.A. 2020 Identifying characteristic and anomalous mantle from the complex relationship between abyssal hill roughness and spreading rates. Geophys. Res. Lett. 47, e2020GL088162.CrossRefGoogle Scholar
Goff, J.A. & Jordan, T.H. 1988 Stochastic modeling of seafloor morphology: inversion of sea beam data for second-order statistics. J. Geophys. Res. 93, 13 58913 608.CrossRefGoogle Scholar
Goldsmith, E.J. & Esler, J.G. 2021 Wave propagation in rotating shallow water in the presence of small-scale topography. J. Fluid Mech. 923, A24.CrossRefGoogle Scholar
Gulliver, L. & Radko, T. 2022 Topographic stabilization of ocean rings. Geophys. Res. Lett. 49, e2021GL097686.CrossRefGoogle Scholar
Gulliver, L.T. & Radko, T. 2023 Virtual laboratory experiments on the interaction of a vortex with small-scale topography. Phys. Fluids 35, 021703.CrossRefGoogle Scholar
Hallberg, R. & Gnanadesikan, A. 2006 The role of eddies in determining the structure and response of the wind-driven southern hemisphere overturning: results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr. 36, 22322252.CrossRefGoogle Scholar
Johnson, G.C. & Bryden, H.L. 1989 On the size of the antarctic circumpolar current. Deep-Sea Res. 36A, 3953.CrossRefGoogle Scholar
Kamenkovich, I., Berloff, P. & Pedlosky, J. 2009 Role of eddy forcing in the dynamics of multiple zonal jets in a model of the North Atlantic. J. Phys. Oceanogr. 39, 13611379.CrossRefGoogle Scholar
LaCasce, J., Escartin, J., Chassignet, E.P. & Xu, X. 2019 Jet instability over smooth, corrugated, and realistic bathymetry. J. Phys. Oceanogr. 49, 585605.CrossRefGoogle Scholar
Manfroi, A. & Young, W. 1999 Slow evolution of zonal jets on the beta plane. J. Atmos. Sci. 56, 784800.2.0.CO;2>CrossRefGoogle Scholar
Mashayek, A. 2023 Large-scale impacts of small-scale ocean topography. J. Fluid Mech. 964, F1.CrossRefGoogle Scholar
Maximenko, N.A., Bang, B. & Sasaki, H. 2005 Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett. 32, L12607.CrossRefGoogle Scholar
Maximenko, N.A., Melnichenko, O.V., Niiler, P.P. & Sasaki, H. 2008 Stationary mesoscale jet-like features in the ocean. Geophys. Res. Lett. 35, L08603.CrossRefGoogle Scholar
Mei, C.C. & Vernescu, M. 2010 Homogenization Methods for Multiscale Mechanics. World Scientific Publishing.CrossRefGoogle Scholar
Nikurashin, M., Ferrari, R., Grisouard, N. & Polzin, K. 2014 The impact of finite-amplitude bottom topography on internal wave generation in the Southern Ocean. J. Phys. Oceanogr. 44, 29382950.CrossRefGoogle Scholar
Palóczy, A. & LaCasce, J.H. 2022 Instability of a surface jet over rough topography. J. Phys. Oceanogr. 52, 27252740.CrossRefGoogle Scholar
Park, Y.-G., Whitehead, J.A. & Gnanadeskian, A. 1994 Turbulent mixing in stratified fluids: layer formation and energetics. J. Fluid Mech. 279, 279311.CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.CrossRefGoogle Scholar
Phillips, O.M. 1972 Turbulence in a strongly stratified fluid: is it unstable? Deep-Sea Res. 19, 7981.Google Scholar
Posmentier, E.S. 1977 The generation of salinity finestructure by vertical diffusion. J. Phys. Oceanogr. 7, 298300.2.0.CO;2>CrossRefGoogle Scholar
Powell, M.D., Vickery, P.J. & Reinhold, T.A. 2003 Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422, 279283.CrossRefGoogle ScholarPubMed
Pružina, P., Hughes, D.W. & Pegler, S.S. 2023 Salt fingering staircases and the three-component Phillips effect. J. Fluid Mech. 968, A16.CrossRefGoogle Scholar
Radko, T. 2007 Mechanics of merging event for a series of layers in a stratified turbulent fluid. J. Fluid Mech. 577, 251273.CrossRefGoogle Scholar
Radko, T. 2020 Control of baroclinic instability by submesoscale topography. J. Fluid Mech. 882, A14.CrossRefGoogle Scholar
Radko, T. 2022 a Spin-down of a barotropic vortex by irregular small-scale topography. J. Fluid Mech. 944, A5.CrossRefGoogle Scholar
Radko, T. 2022 b Spin-down of a baroclinic vortex by irregular small-scale topography. J. Fluid Mech. 953, A7.CrossRefGoogle Scholar
Radko, T. 2023 a A generalized theory of flow forcing by rough topography. J. Fluid Mech. 961, A24.CrossRefGoogle Scholar
Radko, T. 2023 b The sandpaper theory of flow-topography interaction for homogeneous shallow-water systems. J. Fluid Mech. 977, A9.CrossRefGoogle Scholar
Radko, T. 2024 The sandpaper theory of flow-topography interaction for multilayer shallow-water systems. J. Fluid Mech. 988, A52.CrossRefGoogle Scholar
Ruddick, B.R., McDougall, T.J. & Turner, J.S. 1989 The formation of layers in a uniformly stirred density gradient. Deep-Sea Res. 36, 597609.CrossRefGoogle Scholar
Senior, N.V., Zhai, X. & Stevens, D.P. 2024 Zonal jets and eddy tilts in barotropic geostrophic turbulence. J. Fluid Mech. 986, A38.CrossRefGoogle Scholar
Sokolov, S. & Rintoul, S. 2007 Multiple jets of the Antarctic circumpolar current south of Australia. J. Phys. Oceanogr. 37, 13941412.CrossRefGoogle Scholar
Stammer, D. 1997 Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr. 27, 17431769.2.0.CO;2>CrossRefGoogle Scholar
Swaters, G.E. 2010 Modal interpretation for the Ekman destabilization of inviscidly stable baroclinic flow in the Phillips model. J. Phys. Oceanogr. 40, 830839.CrossRefGoogle Scholar
Thorpe, S.A. 2005 The Turbulent Ocean. Cambridge University Press.CrossRefGoogle Scholar
Vallis, G.K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Vanneste, J. 2000 Enhanced dissipation for quasi-geostrophic motion over small-scale topography. J. Fluid Mech. 407, 105122.CrossRefGoogle Scholar
Vanneste, J. 2003 Nonlinear dynamics over rough topography: homogeneous and stratified quasi-geostrophic theory. J. Fluid Mech. 474, 299318.CrossRefGoogle Scholar