Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T05:45:52.307Z Has data issue: false hasContentIssue false

Instability modes and transition of pulsatile stenotic flow: pulse-period dependence

Published online by Cambridge University Press:  05 February 2007

H. M. BLACKBURN
Affiliation:
CSIRO Manufacturing and Infrastructure Technology, PO Box 56, Highett, Vic 3190, Australia
S. J. SHERWIN
Affiliation:
Department of Aeronautics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

Abstract

The instability modes arising within simple non-reversing pulsatile flows in a circular tube with a smooth axisymmetric constriction are examined using global Floquet stability analysis and direct numerical simulation. The sectionally averaged pulsatile flow is represented with one harmonic component superimposed on a time-mean flow. We have previously identified a period-doubling global instability mechanism associated with alternating tilting of the vortex rings that are ejected out of the stenosis throat with each pulse. Here we show that while alternating tilting of vortex rings is the primary instability mode for comparatively larger reduced velocities associated with long pulse periods (or low Womersley numbers), for lower reduced velocities that are associated with shorter pulse periods the primary instability typically manifests as azimuthal waves (Widnall instability modes) of low wavenumber that grow on each vortex ring. Convective shear-layer instabilities are also supported by the types of flow considered. To provide an insight into the comparative role of these types of instability, which have still shorter temporal periods, we also introduce high-frequency low-amplitude perturbations to the base flows of the above global instabilities. For the range of parameters considered, we observe that the dominant features of the primary Floquet instability persist, but that the additional presence of the convective instability can have a destabilizing effect, especially for long pulse periods.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmed, S. A. & Giddens, D. P. 1983 Velocity measurements in steady flow through axisymmetric stenoses at moderate Reynolds numbers. J. Biomech. 16, 505516.CrossRefGoogle ScholarPubMed
Ahmed, S. A. & Giddens, D. P. 1984 Pulsatile poststenotic flow studies with laser Doppler anemometry. J. Biomech. 17, 695705.CrossRefGoogle ScholarPubMed
Akhavan, R., Kamm, R. D. & Shapiro, A. H. 1991 An investigation of transition to turbulence in bounded oscillatory Stokes flows. Part 1. Experiments. J. Fluid Mech. 225, 395422.CrossRefGoogle Scholar
Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.CrossRefGoogle Scholar
Berger, S. A. & Jou, L.-D. 2000 Flows in stenotic vessels. Annu. Rev. Fluid Mech. 32, 347384.CrossRefGoogle Scholar
Blackburn, H. M. 2002 Three-dimensional instability and state selection in an oscillatory axisymmetric swirling flow. Phys. Fluids 14, 39833996.CrossRefGoogle Scholar
Blackburn, H. M. & Lopez, J. M. 2003 The onset of three-dimensional standing and modulated travelling waves in a periodically driven cavity flow. J. Fluid Mech. 497, 289317.CrossRefGoogle Scholar
Blackburn, H. M. & Sherwin, S. J. 2004 Formulation of a Galerkin spectral element–Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys. 197, 759778.CrossRefGoogle Scholar
Blackburn, H. M., Mansour, N. N. & Cantwell, B. J. 1996 Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech. 310, 269292.CrossRefGoogle Scholar
Caro, C. G., Fitz-Gerald, J. M. & Schroter, R. C. 1971 Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. Lond. B 177, 109159.Google ScholarPubMed
Cassanova, R. A. & Giddens, D. P. 1978 Disorder distal to modified stenoses in steady and pulsatile flow. J. Biomech. 11, 441453.CrossRefGoogle Scholar
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.CrossRefGoogle Scholar
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flows. Phys. Fluids A 2 (5), 765777.CrossRefGoogle Scholar
Dodds, S. R. & Phillips, P. S. 2003 The haemodynamics of multiple sequential stenoses and the criteria for a critical stenosis. Eur. J. Endovasc. Surg. 26, 348353.CrossRefGoogle ScholarPubMed
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.CrossRefGoogle Scholar
Goldstein, J. A., Demetriou, D., Grines, C., Pica, M. & O'Neill, W. W. 2000 Multiple complex coronary plaques in patients with acute myocardial infarction. New Engl. J. Med. 343, 915922.CrossRefGoogle ScholarPubMed
Guermond, J. & Shen, J. 2003 Velocity-correction projection methods for incompresible flows. SIAM J. Numer. Anal. 41, 112134.CrossRefGoogle Scholar
Huerre, P. & Rossi, M. 1998 Hydrodynamic instabilities in open flows. In Hydrodynamics and Nonlinear Instabilities (ed. Godréche, C. & Manneville, P.), pp. 81294. Cambridge University Press.CrossRefGoogle Scholar
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414443.CrossRefGoogle Scholar
Khalifa, A. M. A. & Giddens, D. P. 1981 Characterization and evolution of poststenotic disturbances. J. Biomech. 14, 279296.CrossRefGoogle ScholarPubMed
Ku, D. N. 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399434.CrossRefGoogle Scholar
Kumaran, V. 1996 Stability of inviscid flow in a flexible tube. J. Fluid Mech. 320, 117.CrossRefGoogle Scholar
Long, Q., Xu, X. Y., Ramnarine, K. V. & Hoskins, P. 2001 Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J. Biomech. 34, 12291242.CrossRefGoogle ScholarPubMed
McDonald, D. A. 1974 Blood Flow in Arteries, 2nd edn. Edward Arnold.Google Scholar
Mallinger, F. & Drikakis, D. 2002 Instability in three-dimensional, unsteady, stenotic flows. Intl J. Heat Fluid Flow 23, 657663.CrossRefGoogle Scholar
Mittal, R., Simmons, S. & Najjar, F. 2003 Numerical study of pulsatile flow in a constricted channel. J. Fluid Mech. 485, 337378.CrossRefGoogle Scholar
Monkewitz, P. A. & Huerre, P. 1982 Influence of the velocity ratio on the spatial instability of mixing layers. Phys. Fluids 25, 11371143.CrossRefGoogle Scholar
Nichols, W. W. & O'Rourke, M. F. 1998 McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 4th edn. Arnold.Google Scholar
Ojha, M., Cobbold, R. S. C., Johnston, K. W. & Hummel, R. L. 1989 Pulsatile flow through constricted tubes: an experimental investigation using photochromic tracer methods. J. Fluid Mech. 203, 173197.CrossRefGoogle Scholar
Pedley, T. J. 2000 Blood flow in arteries and veins. In Perspectives in Fluid Dynamics: A Collective Introduction to Current Research (ed. Batchelor, G. K., Moffatt, H. K. & Worster, M. G.), chap. 3, pp. 105158. Cambridge University Press.Google Scholar
Pitt, R., Sherwin, S. J. & Theofilis, V. 2005 Biglobal stability analysis of steady flow in constricted channel geometries. Intl J. Numer. Meth. Fluids 47, 12271235.CrossRefGoogle Scholar
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 41 263288.CrossRefGoogle Scholar
Reynolds, W. C., Parekh, D. E., Juvet, P. J. D. & Lee, M. J. D. 2003 Bifurcating and blooming jets. Annu. Rev. Fluid Mech. 35, 295315.CrossRefGoogle Scholar
Rosenfeld, M., Rambod, E. & Gharib, M. 1998 Circulation and formation number of laminar vortex rings. J. Fluid Mech. 376, 297318.CrossRefGoogle Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Sexl, T. 1930 Über den von E. G. Richardson entdeckten ‘annulareffekt’. Z. Phys. 61, 349362.CrossRefGoogle Scholar
Sherwin, S. J. & Blackburn, H. M. 2005 Three-dimensional instabilities and transition of steady and pulsatile flows in an axisymmetric stenotic tube. J. Fluid Mech. 533, 297327.CrossRefGoogle Scholar
Sobey, I. J. & Drazin, P. G. 1986 Bifurcations of two-dimensional channel flows. J. Fluid Mech. 171, 263287.CrossRefGoogle Scholar
Stroud, J. S., Berger, S. A. & Saloner, D. 2000 Influence of stenosis morphology on flow through stenotic vessels: implications for plaque rupture. J. Biomech. 33, 443455.CrossRefGoogle ScholarPubMed
Stroud, J. S., Berger, S. A. & Saloner, D. 2002 Numerical analysis of flow through a severely stenotic carotid artery bifurcation. Trans. ASME K: J. Biomech. Engng 124, 920.Google ScholarPubMed
Taylor, C. A. & Draney, M. L. 2004 Experimental and computational methods in cardiovascular fluid mechanics. Annu. Rev. Fluid Mech. 36, 197231.CrossRefGoogle Scholar
Tuckerman, L. S. & Barkley, D. 2000 Bifurcation analysis for timesteppers. In Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems (ed. Doedel, E. & Tuckerman, L. S.), pp. 453566. Springer.CrossRefGoogle Scholar
Varghese, S., Frankel, S. & Fischer, P. 2006 Direct numerical simulation of stenotic flow. Part 2. Pulsatile flow. J. Fluid Mech. (submitted).CrossRefGoogle Scholar
Widnall, S. E., Bliss, D. B. & Tsai, C.-Y. 1974 The instability of short waves on a vortex ring. J. Fluid Mech. 66, 3547.CrossRefGoogle Scholar
Womersley, J. R. 1955 Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553563.CrossRefGoogle ScholarPubMed
Wootton, D. M. & Ku, D. N. 1999 Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Engng 1, 299329.CrossRefGoogle ScholarPubMed
Yang, W. H. & Yih, C.-S. 1977 Stability of time-periodic flows in a circular pipe. J. Fluid Mech. 82, 497505.CrossRefGoogle Scholar