Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-18T18:42:06.305Z Has data issue: false hasContentIssue false

Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities

Published online by Cambridge University Press:  20 April 2006

Marc K. Smith
Affiliation:
Department of Engineering Sciences and Applied Mathematics, The Technological Institute, Northwestern University, Evanston, Illinois 60201 Present address: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
Stephen H. Davis
Affiliation:
Department of Engineering Sciences and Applied Mathematics, The Technological Institute, Northwestern University, Evanston, Illinois 60201

Abstract

A planar liquid layer is bounded below by a rigid plate and above by an interface with a passive gas. A steady shear flow is set up by imposing a temperature gradient along the layer and driving the motion by thermocapillarity. This dynamic state is susceptible to two types of thermal-convective instabilities: (i) stationary longitudinal rolls, which involve the classical Marangoni instability studied by Pearson; and (ii) unsteady hydrothermal waves, which involve a new mechanism of instability deriving its energy from the horizontal temperature gradients. Thermal stability characteristics for liquid layers with and without return-flow profiles are presented as functions of the Prandtl number of the liquid and the Biot number of the interface. Comparisons are made with available experimental observations.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, J. 1970 Combust. Sci. & Tech. 2, 105.
Carruthers, J. R. 1976 J. Crystal Growth 32, 13.
Chun, C.-H. & Wuest, W. 1978a Acta Astronautica 5, 681.
Chun, C.-H. & Wuest, W. 1978b COSPAR: Space Research 18, 523.
Chun, C.-H. & Wuest, W. 1979 Acta Astronautica 6, 1073.
Clark, P. A. & Wilcox, W. R. 1980 J. Crystal Growth 50, 461.
Davis, S. H. & Homsy, G. M. 1980 J. Fluid Mech. 98, 527.
Gumerman, R. J. & Homsy, G. M. 1974 AIChE J. 20, 981.
Kenning, D. B. R. 1968 Appl. Mech. Rev. 21, 1101.
Kölker, H. 1980 J. Crystal Growth 50, 852.
Papazian, J. M., Gutowski, R. & Wilcox, W. R. 1979 AIAA J. 17, 1111.
Pearson, J. R. A. 1958 J. Fluid Mech. 4, 489.
Scanlon, J. & Segel, L. A. 1967 J. Fluid Mech. 30, 149.
Schwabe, D., Scharmann, A., Preisser, F. & Oeder, R. 1978 J. Crystal Growth 43, 305.
Schwabe, D. & Scharmann, A. 1979 J. Crystal Growth 46, 125.
Scott, M. R. & Watts, H. A. 1975 Sandia Labs. Rep. SAND75-0198, Albuquerque.
Scott, M. R. & Watts, H. A. 1977 SIAM J. Num. Anal. 14, 40.
Scriven, L. E. & Sternling, C. V. 1960 Nature 187, 186.
Sen, A. K. & Davis, S. H. 1982 J. Fluid Mech. 121, 163.
Sirignano, W. A. 1972 Combust. Sci. & Tech. 6, 95.
Smith, M. K. 1982 Ph.D. disseration, Northwestern University.
Smith, M. K. & Davis, S. H. 1983 J. Fluid Mech. 132, 145.
Subramanian, R. S. 1981 AIChE J. 27, 646.
Wilcox, W. R. 1971 Preparation and Properties of Solid State Materials Vol. 1: Aspects of Crystal Growth, p. 37. Dekker.
Young, N. O., Goldstein, J. S. & Block, M. J. 1959 J. Fluid Mech. 6, 350.