Published online by Cambridge University Press: 21 April 2006
The hydrodynamic stability of a rapidly elongating, viscous liquid jet such as obtained in shaped charges is presented. The flow field depends on three characteristic timescales associated with the growth of perturbations (due essentially to the effect of the surface tension), the elongation of the jet, and the inward diffusion of vorticity from the free surface, respectively. The latter process introduces a time lag resulting in the current values of the free-surface perturbation and its time derivative being a function of their past history. Solutions of the integro-differential equation for the evolution of disturbances exhibit a novel dual role played by the viscosity: besides the traditional damping effect it is associated with a destabilizing mechanism in the elongating jet. The wavelength of maximum instability is also a function of time elapsed since the jet formation, longer wavelengths becoming dominant at later stages. Understanding of these instability processes can help in both promoting and delaying instability as required by specific applications.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.