Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T17:59:24.787Z Has data issue: false hasContentIssue false

The influence of the outer bath in the dynamics of axisymmetric liquid bridges

Published online by Cambridge University Press:  20 April 2006

Angel Sanz
Affiliation:
Laboratorio de Aerodinámica, E.T.S.I. Aeronáuticos, Universidad Politécnica, 28040 Madrid, Spain

Abstract

The main effects on the dynamics of a liquid bridge due to the presence of an outer liquid, as occur in experiments using the Plateau-tank technique, are considered. The one-dimensional nonlinear model developed here allows us to perform the computation of both breaking processes and oscillatory motions of slender liquid bridges, although in this paper only the results concerning breaking processes are reported. Additionally, the oscillatory motions are studied both experimentally and by using a new linear model. Results from both sources show good agreement.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, H. F. 1982 Coupled oscillations of a solidly rotating liquid bridge. Acta Astronaut. 9, 547563.Google Scholar
Bisch, C., Lasek, A. & Rodot, H. 1982 Hydrodynamic behaviour of spherical semi-free liquid volumes in simulated weightlessness. J. Méc. Theor. Appl. 1, 165183.Google Scholar
Carruthers, J. R. & Grasso, M. 1972 The stabilities of floating liquid zones in simulated zero gravity. J. Cryst. Growth 13/14, 611614.Google Scholar
Coriell, S. R., Hardy, S. C. & Cordes, M. R. 1977 Stability of liquid zones. J. Coll. Interface Sci. 60, 126136.Google Scholar
Da Riva, I. & Alvarez Pereira, E. 1982 A regular perturbation approach to surface tension driven flows. Acta Astronaut. 9, 217224.Google Scholar
Da Riva, I. & Meseguer, J. 1978 On the structure of the floating zone in melting. Acta Astronaut. 5, 637653.Google Scholar
Elagin, M. P., Lebedev, A. P. & Tsmelev, A. V. 1982 Laboratory modeling of the stability and dynamics of free liquid zones. In Hydromechanics and Heat and Mass Transfer in Zero-Gravity (in Russian), pp. 2433. Nauka.
Erle, M. A., Gillette, R. D. & Dyson, D. C. 1970 Stability of interfaces of revolution with constant surface tension. The case of catenoid. Chem. Engng J. 1, 97109.Google Scholar
Fowle, A. A., Wang, C. A. & Strong, P. F. 1979 Experiments on the stability of conical and cylindrical liquid columns at low Bond numbers. ADL Ref. C-82435. Arthur D. Little, Inc., Cambridge, Massachusetts.
Gillette, R. D. & Dyson, R. C. 1971 Stability of fluid interfaces of revolution between equal solid circular plates. Chem. Engng J. 2, 4454.Google Scholar
Harriot, G. M. & Brown, R. A. 1983 Flow in a differentially rotated cylindrical drop at low Reynolds number. J. Fluid Mech. 126, 269285.Google Scholar
Levich, V. G. 1962 Physicochemical Hydrodynamics, chap. XI, pp. 591668. Prentice-Hall.
Leybold-Heraeus. 1977 Floating Zone melting of refractory metal rods. 61S1.210e. Leybold-Heraeus GmbH & Co. KG, Bonner Strasse 504, 0-5000 Köln 51.
Martinez, I. 1976 Floating zone under reduced gravity. Axisymmetric equilibrium shapes. In Material Sciences in Space ESA SP-114, pp. 277282. Paris: ESA.
Martinez, I. 1978 Floating zones. Equilibrium shapes and stability criteria. In COSPAR: Space Research Vol. XVIII (ed. M. J. Rycroft & A. C. Strickland), pp. 519522. Pergamon.
Martinez, I. & Rivas, D. 1982 Plateau Tank Facility for simulation of Spacelab experiments. Acta Astronaut. 9, 339342.Google Scholar
Mason, G. C. 1970 An experimental determination of the stable length of cylindrical liquid bubbles. J. Coll. Interface Sci. 32, 172176.Google Scholar
Meseguer, J. 1983a The breaking of axisymmetric slender liquid bridges. J. Fluid Mech. 130, 123151.Google Scholar
Meseguer, J. 1983b The influence of axial microgravity on the breakage of axisymmetric slender liquid bridges. J. Cryst. Growth 62, 577586.Google Scholar
Meseguer, J. & Sanz, A. 1985 Numerical and experimental study of the dynamics of axisymmetric slender liquid bridges. J. Fluid Mech. 153, 83101.Google Scholar
Meseguer, J., Sanz, A. & Rivas, D. 1983 The breaking of axisymmetric non-cylindrical liquid bridges. In Materials Sciences under Microgravity ESA SP-191, pp. 261265. Paris: ESA.
Milgram, J. H. & Bradley, R. G. 1971 The determination of the interfacial tension between two liquids. J. Fluid Mech. 50, 469.Google Scholar
Mitchell, A. R. & Griffiths, D. F. 1980 The Finite Difference Method in Partial Differential Equations. Wiley.
Napolitano, L. G. 1978 Microgravitational fluid dynamics. In Proc. 2nd Levich Cong., Washington.
Phinney, R. E. 1973 Stability of a laminar viscous jet - the influence of an ambient gas. Phys. Fluids 16, 193196.Google Scholar
Princen, H. M., Zia, I. Y. & Mason, S. G. 1967 Measurement of interfacial tension from the shape of a rotating drop. J. Coll. Interface Sci. 23, 99.Google Scholar
Provost, P. & Joyal, M. 1972 Thermodynamique. Masson.
Rayleigh, Lord 1945 The Theory of Sound, vol. 2. Dover.
Rhone-Poulenc 1978 Rhodorsil silicones. Ref. X-03-03b, Rhone-Poulenc Chimie Fine, Dept Silicones, Paris.
Rivas, D. & Meseguer, J. 1984 One-dimensional, self-similar solution of the dynamics of axisymmetric slender liquid bridges. J. Fluid Mech. 138, 417.Google Scholar
Roache, P. J. 1972 Computational Fluid Dynamics. Hermosa.
Sanz, A. 1983 Comportamiento de las zonas liquidas flotantes en microgravedad simulada. Tesis doctoral, Universidad Politecnica de Madrid.
Sanz, A. & Martinez, I. 1983 Minimum volume for a liquid bridge between equal disks. J. Coll. Interface Sci. 93, 235240.Google Scholar
Tagg, R., Cammack, L., Cronquist, A. & Wang, T. G. 1980 Rotating liquid drops: Plateau's experiment revisited. JPL 900-954. Jet Propulsion Laboratory, Caltech.
Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. A 150, 322337.Google Scholar