Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-20T02:31:01.525Z Has data issue: false hasContentIssue false

Influence of helicity on the evolution of isotropic turbulence at high Reynolds number

Published online by Cambridge University Press:  12 April 2006

J. C. André
Affiliation:
Direction de la Météorologie, EERM/GMD, Paris, France
M. Lesieur
Affiliation:
Centre National de la Recherche Scientifique, Observatoire de Nice, France Present address: Institut de Mécanique de Grenoble, 38041 Grenoble-Cédex, France.

Abstract

Three-dimensional homogeneous isotropic turbulence at very high Reynolds number R is studied using a variant of the Markovian eddy-damped quasi-normal theory. In the case without helicity, numerical calculations indicate the development of a $k^{-\frac{5}{3}}$ inertial range in the energy spectrum and an onset of significant energy dissipation at a time t* which appears to be independent of the viscosity v as v → 0; analytical arguments having a bearing on this behaviour, described as an ‘energy catastrophe’, are also discussed. The skewness factor (for t > t*), which increases with R, tends to 0·495 when R → ∞. When helicity is present, the existence of simultaneous energy and helicity cascades is demonstrated numerically. It is also shown that the helicity cascade inhibits the energy transfer towards large wavenumbers, in agreement with preliminary low Reynolds number results of Herring and with the conclusion of Kraichnan (1973) based on analysis of the interaction between two helicity waves. This inhibition implies a delay of the onset of energy dissipation at zero viscosity. It is shown that, whatever the relative rate of helicity and energy injection, a regime is attained at large wavenumbers k where the relative helicity tends to zero (with increasing k) and helicity is carried along locally and linearly by the energy cascade like a passive scalar. In practice, the linear regime is attained when the relative helicity is less than about 10%. The Kolmogorov constants of energy and helicity in the inertial range are determined. The impossibility of pure helicity cascades of a type conjectured by Brissaud et al. (1973a) is demonstrated. Finally it is shown that, because of dissipation and non-positive-definiteness of the helicity spectrum, non-zero total helicity may appear in the decay of unforced turbulence with zero total initial helicity, if the helicity spectrum is not initially identically zero.

Type
Research Article
Copyright
© 1977 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basdevant, C., Lesieur, M. & Sadourny, R. 1976 Subgridscale modelling of enstrophy transfer in two-dimensional turbulence. Preprint Laboratoire de Météorologie Dynamique, Paris.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Batchelor, G. K. 1959 J. Fluid Mech. 5, 113.
Betchov, R. 1961 Phys. Fluids 4, 925.
Brissaud, A., Frisch, U., Léorat, J., Lesieur, M. & Mazure, A. 1973a Phys. Fluids 16, 1366.
Brissaud, A., Frisch, U., Léorat, J., Lesieur, M., Mazure, A., Pouquet, A., Sadourny, R. & Sulem, P. L. 1973b Ann. Geophys. 29, 539.
Corrsin, S. 1951 J. Appl. Phys. 22, 469.
Ebin, D. & Marsden, J. 1970 Ann. Math. 92, 102.
Frisch, U., Lesieur, M. & Brissaud, A. 1974 J. Fluid Mech. 65, 145.
Frisch, U., Lesieur, M. & Sulem, P. L. 1976 Phys. Rev. Lett. 37, 895.
Frisch, U., Pouquet, A., Léorat, J. & Mazure, A. 1975 J. Fluid Mech. 68, 769.
Kato, T. 1972 J. Funct. Anal. 9, 296.
Kraichnan, R. H. 1971a J. Fluid Mech. 47, 513.
Kraichnan, R. H. 1971b J. Fluid Mech. 47, 525.
Kraichnan, R. H. 1973 J. Fluid Mech. 59, 745.
Kraichnan, R. H. 1976 J. Fluid Mech. 77, 753.
Lee, T. D. 1952 Quart. Appl. Math. 10, 69.
Leith, C. E. 1971 J. Atmos. Sci. 28, 145.
Lesieur, M. 1973 Ph.D. thesis, University of Nice.
Lesieur, M., Frisch, U. & Brissaud, A. 1971 Ann. Geophys. 27, 151.
Lesieur, M. & Sulem, P. L. 1976 In Turbulence and Navier — Stokes Equations. Springer.
Mazure, A. 1972 Thesis, Observatoire de Meudon.
Moffatt, H. K. 1969 J. Fluid Mech. 35, 117.
Moffatt, H. K. 1970a J. Fluid Mech. 41, 435.
Moffatt, H. K. 1970b J. Fluid Mech. 44, 705.
Oboukhov, A. M. 1949 Izv. Akad. Nauk USSR, Geogr. Geophyz. 13, 58.
Orszag, S. A. 1970 J. Fluid Mech. 41, 363.
Orszag, S. A. 1976 In Proc. 1973 Les Houches Summer School Theor. Phys. Gordon & Breach.
Orszag, S. A. & Patterson, G. S. 1972 In Statistical Models and Turbulence, p. 127. Springer.
Penel, P. 1975 Ph.D. thesis, University of Paris-Sud.
Pouquet, A., Frisch, U. & Léorat, J. 1976 J. Fluid Mech. 77, 321.
Pouquet, A., Lesieur, M., André, J. C. & Basdevant, C. 1975 J. Fluid Mech. 72, 305.
Pouquet, A. & Patterson, G. S. 1976 Numerical simulation of helical magnetohydrodynamic turbulence. Preprint N.C.A.R., Boulder.
Proudman, I. & Reid, W. H. 1954 Phil. Trans. Roy. Soc. A247, 163.
Steenbeck, M., Krause, F. & Rädler, Z. 1966 Z. Naturforsch. A21, 364.
Sulem, P. L., Lesieur, M. & Frisch, U. 1975 Ann. Geophys. 31, 52.