Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T01:18:01.087Z Has data issue: false hasContentIssue false

Inertial instability of flows on the inside or outside of a rotating horizontal cylinder

Published online by Cambridge University Press:  01 November 2013

E. S. Benilov*
Affiliation:
Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
V. N. Lapin
Affiliation:
Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
*
Email address for correspondence: [email protected]

Abstract

We consider thin liquid films on the inside (rimming flows) or outside (coating flows) of a cylinder with horizontal axis, rotating about this axis. If the liquid’s net volume is small, such films are known to evolve towards a steady state with a smooth surface, whereas, for larger amounts, the flow develops a ‘shock’ similar to a tidal bore. In this work, smooth films are shown to be unstable. Since the strongest instability occurs at wavelengths comparable to the film’s thickness, our analysis is based on the full Navier–Stokes equations, not on the lubrication approximation (which has been traditionally used in this problem). It is also shown that, for cylinders of sufficiently small radii, the instability can be suppressed by surface tension.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashmore, J., Hosoi, A. E. & Stone, H. A. 2003 The effect of surface tension on rimming flows in a partially filled rotating cylinder. J. Fluid Mech. 479, 6598.Google Scholar
Benilov, E. S. 2004 Explosive instability in a linear system with neutrally stable eigenmodes. Part 2: Multi-dimensional disturbances. J. Fluid Mech. 501, 105124.Google Scholar
Benilov, E. S. 2006 Does surface tension stabilize a liquid film inside a rotating horizontal cylinder? Part 2: Multi-dimensional disturbances. Stud. Appl. Maths 116, 120.Google Scholar
Benilov, E. S., Benilov, M. S. & Kopteva, N. 2008 Steady rimming flows with surface tension. J. Fluid Mech. 597, 91118.CrossRefGoogle Scholar
Benilov, E. S., Kopteva, N. & O’Brien, S. B. G. 2005 Does surface tension stabilize a liquid film inside a rotating horizontal cylinder? Q. J. Mech. Appl. Maths 58, 158200.CrossRefGoogle Scholar
Benilov, E. S., Lacey, S. M. & O’Brien, S. B. G. 2005 Exploding solutions for three-dimensional rimming flows. Q. J. Mech. Appl. Maths 58, 563576.Google Scholar
Benilov, E. S. & Lapin, V. N. 2011 Shock waves in Stokes flows down an inclined plate. Phys. Rev. E 83, 066321.CrossRefGoogle ScholarPubMed
Benilov, E. S., Lapin, V. N. & O’Brien, S. B. G. 2012 On rimming flows with shocks. J. Engng Maths 75, 4962.Google Scholar
Benilov, E. S. & O’Brien, S. B. G. 2005 Inertial instability of a liquid film inside a rotating horizontal cylinder. Phys. Fluids 17, 052106.CrossRefGoogle Scholar
Benilov, E. S., O’Brien, S. B. G. & Sazonov, I. A. 2003 A new type of instability: explosive disturbances in a liquid film inside a rotating horizontal cylinder. J. Fluid Mech. 497, 201224.Google Scholar
Benjamin, T. B., Pritchard, W. G. & Tavener, S. J. 1993 Steady and unsteady flows of a highly viscous liquid inside a rotating horizontal cylinder (unpublished manuscript).Google Scholar
Chapman, S. J. 2002 Subcritical transition in channel flow. J. Fluid Mech. 451, 3597.Google Scholar
Farrel, B. F. 1982 Modal and nonmodal baroclinic waves. J. Atmos. Sci. 41, 16631686.Google Scholar
Finn, R. 1986 Equilibrium Capillary Surfaces. Springer.Google Scholar
Landau, L. & Lifshitz, E. 1995 Course of Theoretical Physics, vol. 6, Fluid Mechanics. Pergamon.Google Scholar
Leslie, G. A., Wilson, S. K. & Duffy, B. R. 2013 Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder. J. Fluid Mech. 716, 5182.CrossRefGoogle Scholar
Moffatt, H. K. 1977 Behaviour of a viscous film on the outer surface of a rotating cylinder. J. Méc. 16, 651–574.Google Scholar
O’Brien, S. B. G. 1998 A model for the coating of cylindrical light bulbs. In Progress in Industrial Mathematics (ed. Arkeryd, L., Bergh, J., Brenner, P. & Pettersson, R.), pp. 4655. B. G. Teubner.Google Scholar
O’Brien, S. B. G. 2002 A mechanism for two dimensional instabilities in rimming flow. Q. Appl. Maths 60, 283300.CrossRefGoogle Scholar
O’Brien, S. B. G. & Gath, E. G. 1998 The location of a shock in rimming flow. Phys. Fluids 10, 10401042.Google Scholar
Peterson, R. C., Jimack, P. K. & Kelmanson, M. A. 2001 On the stability of viscous free-surface flow supported by a rotating cylinder. Proc. R. Soc. Lond. A 457, 14271445.Google Scholar
Pougatch, K. & Frigaard, I. 2011 Thin film flow on the inside surface of a horizontally rotating cylinder: steady state solutions and their stability. Phys. Fluids 23, 022102.Google Scholar
Throne, J. L. & Gianchandani, J. 1980 Reactive rotational molding. Polym. Engng Sci. 20, 899919.CrossRefGoogle Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.Google Scholar
Williams, J., Hibberd, S., Power, H. & Riley, D. S. 2012 On the effects of mass and momentum transfer from droplets impacting on steady two-dimensional rimming flow in a horizontal cylinder. Phys. Fluids 24, 053103.Google Scholar
Wilson, S. K., Hunt, R. & Duffy, B. R. 2002 On the critical solutions in coating and rimming flow on a uniformly rotating horizontal cylinder. Q. J. Mech. Appl. Maths 55, 357383.Google Scholar