Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-17T08:53:00.711Z Has data issue: false hasContentIssue false

Increased mobility of bidisperse granular avalanches

Published online by Cambridge University Press:  23 November 2007

ESPERANZA LINARES-GUERRERO
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, México D.F. 04510, México
CELINE GOUJON
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, México D.F. 04510, México
ROBERTO ZENIT
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. Postal 70-360, México D.F. 04510, México

Abstract

The unexpected behaviour of long-runout landslides has been a controversial subject of discussion in the geophysics community. In order to provide new insight into this phenomenon, we investigate the apparent reduction of friction resulting from the presence of a second species of smaller particles in the bulk of the granular material that forms the avalanche. Results obtained by means of a two-dimensional soft particle discrete element numerical simulation are presented. The numerical experiments consider an avalanche of two-size particles, originally placed over an inclined plane. The friction coefficient for the particle–particle and wall–particle contacts is held fixed. The granular mass is allowed to evolve with time, until it comes back to rest on a horizontal plane. The position of the centre of mass is located, such that the runout length Lcm/Hcm could be measured, with Lcm and Hcm being the horizontal distance travelled and the height lost by the avalanche centre of mass, respectively. Many simulations were performed keeping the area of the avalanche constant, varying only the area fraction of small particles. The results show that the runout length increases with the area fraction of small particles, reaching a maximum for a given area fraction of small particles. A detailed analysis of the particle distribution in the granular mass indicates that the apparent friction coefficient is affected by the formation of a layer of small particles at the base of the avalanche. This layer is identified as the source of ‘lubrication’. Furthermore, since there is a dependence of the runout on the fall height and the volume in real avalanches, some simulations with different areas and different fall heights were performed. The results show a tendency of the runout to increase with area, and to decrease with the initial fall height, which is in agreement with what is observed for geological events.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aharonov, E. & Sparks, D. E 1999 On phase transition and self-organized critical state in granular packings, Phys. Rev. E 60, 6890.Google Scholar
Balmforth, N. J. & Kerswell, R. R. 2005 Granular collapse in two dimensions. J. Fluid Mech. 538, 399428.CrossRefGoogle Scholar
Barber, C. B., Dobkin, D. P. & Huhdanpaa, H. T. 1996 The quickhull algorithm for convex hulls. ACM Trans. Math. Software 22, 469483.CrossRefGoogle Scholar
Bates, R. L. & Jackson, J. A. 1962 Dictionary of Geological Terms. American Geological Institute, Anchor Books.Google Scholar
Bridgwater, J. 1976 Fundamental powder mixing mechanisms. Powder Technol. 15, 215236.CrossRefGoogle Scholar
Bursik, M., Patra, A., Pitman, E. B., Nichita, C., Macías, J. L., Saucedo, R. & Girina, O. 1979 Advances in studies of dense volcanic granular flows. Rep. Prog. Phys. 68, 271301.CrossRefGoogle Scholar
Campbell, C. S. 1989 Self-lubrication for long runout landslides. J. Geol. 97, 653665.CrossRefGoogle Scholar
Campbell, C. S., Cleary, P. W. & Hopkins, M. 1995 Large-scale landslide simulations: global deformation, velocities and basal friction. J. Geophys. Res. 100, 82678283.CrossRefGoogle Scholar
Cleary, P. W. & Campbell, C. S. 1993 Self-lubrication for long-runout landslides: examination by computer simulations. J. Geophys. Res. 100, 21 911–21 924.Google Scholar
Cundall, P. A. & Strack, O. D. L. 1979 A discrete numerical model for granular assemblies. Geotechnique 29, 4765.CrossRefGoogle Scholar
Dade, W. B. & Huppert, H. E. 1998 Long runout rockfalls. Geology 26, 803806.2.3.CO;2>CrossRefGoogle Scholar
Davies, T. R. H. 1982 Spreading of rock avalanche debris by mechanical fluidization. Rock Mech. 15, 924.CrossRefGoogle Scholar
Dolgunin, V. N. & Ukolov, A. A. 1995 Segregation modelling of particle rapid gravity flow. Powder Technol. 83, 95103.CrossRefGoogle Scholar
Drahun, J. A. & Bridgwater, J. 1983 The mechanisms of free surface segregation. Powder Technol. 36, 3953.CrossRefGoogle Scholar
Ehrichs, E. E., Jaeger, M. M., Karezmar, G. S., Knight, J. B., Kuperman, V. Y. & Nager, S. R. 1995 Granular convection observed by magnetic-resonance-imaging. Science 267, 16321634.CrossRefGoogle ScholarPubMed
Fahnestock, R. K. & Voight, B. (ed.) 1978 Rockslides and Avalanches. 1. Natural phenomena. Elsevier.Google Scholar
Gary, M., McAffe, R. & Wolf, C. L. 1972 Glossary of Geology: Washington, D.C. Am. Geol. Inst. 805.Google Scholar
Gastwirth, J. L. 1972 The estimation of the Lorenz curve and Gini index. Rev. Econ. Stat. 54, 306316.CrossRefGoogle Scholar
Gini, C. 1912 Variabilità e mutabilità. Reprinted in Memorie di metodologica statistica (ed. Pizetti, E. & Salvemini, T.). Libreria Eredi Virgilio Veschi, Rome (1955).Google Scholar
Goujon, C., Dalloz-Dubrujeaud, B. & Thomas, N. 2007 Bidisperse granular avalanches on inclined rough planes: a rich variety of behaviors. Eur. Phys. J. E 23, 199215.Google Scholar
Gray, J. M. N. T. & Chugunov, V. A. 2006 Particle-size segregation and diffusive remixing in shallow granular avalanches. J. Fluid Mech. 569, 365398.CrossRefGoogle Scholar
Gray, J. M. N. T. & Thornton, A. R. 2005 A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. Lond. A 461, 14471473.Google Scholar
Heim, A. 1932 Bergsturz und Menschenleben. Vierteljahresschrift Naturf. Ges. Zürich 77, 1218.Google Scholar
Howard, K. 1973 Avalanche mode of motion: implications from lunar examples. Science 180, 10521055.CrossRefGoogle ScholarPubMed
Hsiau, S. S. & Hunt, M. L. 1993 Shear-induced particle diffusion and longitudinal velocity fluctuations in a granular-flow mixing layer. J. Fluid. Mech. 251, 299313.CrossRefGoogle Scholar
Hsü, K. J. 1975 Catastrophic debris streams (Sturzstroms) generated by rockfalls. Geol. Soc. Am. Bull. 86, 129140.2.0.CO;2>CrossRefGoogle Scholar
Hungr, O. & Evans, S. G. 1997 A dynamic model for landslides with changing mass. Engng. Geol. Environ. 41, 719722.Google Scholar
Huppert, H. E. & Dade, W. B. 1998 Natural disasters: explosive volcanic eruptions and gigantic landslides. Theoret. Comput. Fluid Dyn. 10, 201212.CrossRefGoogle Scholar
Iverson, R. M. & Vallance, J. W. 2001 New views of granular mass flows. Geolog. Soc. Am. 29, 115118.Google Scholar
Jenkins, J. T. 1998 Particle segregation in collisional flows of inelastic spheres. In Physics of Dry Granular Media (ed. Herrmann, H. J., Hovi, J.-P. & Luding, S.), pp. 645658. NATO ASI series, Kluwer.CrossRefGoogle Scholar
Jullien, R., Meakin, P. & Pavlovitch, A. 1992 Three dimensional model for particle size segregation by shaking. Phys. Rev. Lett. 69, 640643.CrossRefGoogle ScholarPubMed
Kent, P. E. 1966 The transport mechanism in catastrophic rock falls. J. Geol. 74, 7983.CrossRefGoogle Scholar
Lajeunesse, E., Mangeney-Castelnau, A. & Vilotte, J. P. 2004 Spreading of a granular mass on a horizontal plane. Phys. Fluids 16, 23712381.CrossRefGoogle Scholar
Lajeunesse, E., Quantin, C., Allemand, P. & Delacourt, C. 2006 New insights on the runout of large landslides in the Valles-Marineris Canyons, Mars. Geophys. Res. Lett. 33, 4403.CrossRefGoogle Scholar
Legros, F. 2002 The mobility of long-runout landslides. Engng. Geol. 63, 301331.CrossRefGoogle Scholar
Lorenz, M. O. 1905 Methods of measuring the concentration of wealth. Publ. Am. Stat. Assoc. 9, 209219.Google Scholar
Lube, G., Huppert, H. E., Sparks, R. S. J. & Hallworth, M. A. 2004 Axisymmetric collapses of granular columns. J. Fluid Mech. 508, 175199.CrossRefGoogle Scholar
Lun, C. K. K. & Bent, A. A. 1994 Numerical simulation of inelastic frictional spheres in simple shear flow. J. Fluid Mech. 258, 335353.CrossRefGoogle Scholar
Melosh, H. J. 1979 Acoustic fluidization–a new geologic process? J. Geophys. Res. 84, 75137520.CrossRefGoogle Scholar
Phillips, J. C., Hogg, A. J., Kerswell, R. R. & Thomas, N. H. 2006 Enhanced mobility of granular mixtures of fine and coarse paricles. Earth Planet. Sci. Lett. 246, 466480.CrossRefGoogle Scholar
Poschel, T. & Buchholtz, V. 1979 Static friction phenomena in granular materials: Coulomb law versus particle geometry. Phys. Rev. Lett. 71, 39633966.CrossRefGoogle Scholar
Rosato, A., Strandburg, K. J., Prinz, F. & Swendsen, R. H. 1987 Why the brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 10381040.CrossRefGoogle Scholar
Rotter, J. M., Holst, F. G., Ooi, J. Y. & Sanad, A. M. 1998 Silo pressure predictions using discrete-element and finite-element analyses. Phil. Trans. R. Soc. Lond. A 356, 26852712.CrossRefGoogle Scholar
Saucedo, R., Macías, J. L. & Bursik, M. 2004 Pyroclastic flow deposits of the 1991 eruption of Volcan de Colima, Mexico. Bull. Volcanol. 66, 291306.CrossRefGoogle Scholar
Savage, S. B. 1989 Flow of granular materials. In Theoretical and Applied Mechanics (ed. Germain, P., Piau, M. & Caillerie, D.), pp. 241266. Elsevier.CrossRefGoogle Scholar
Savage, S. B. & Dai, R. 1993 Studies of granular shear flows. Wall slip velocities, layering and self-diffusion. Mech. Mat. 16, 225238.CrossRefGoogle Scholar
Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177215.CrossRefGoogle Scholar
Savage, S. B. & Lun, C. K. K. 1988 Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid. Mech. 189, 311335.CrossRefGoogle Scholar
Schafer, J., Dippel, S. & Wolf, D. E. 1996 Force schemes in simulations of granular materials. J. Phys. I France 6, 520.CrossRefGoogle Scholar
Scheidegger, A. E. 1975 Physical Aspects of Natural Catastrophes. Elsevier.Google Scholar
Self, S. & Hayashi, J. N. 1992 A comparison of pyroclastic flow and landslide mobility. J. Geophys. 97, 90639071.Google Scholar
Shaller, P. J. & Smith-Shaller, A. 1996 Sturzstroms and detachment faults. In Anbza-Borrego Desert State Park, California South Coast Geol. Soc. (ed. Abott, P. L. & Semour, D. C.), pp. 185202. Santa Anna.Google Scholar
Sheridian, M. F., Siebe, C. & Komorowski, J. C. 1992 Morphology and emplacement of unusual debris–avalanche deposit at Jocotitlán volcano. Bull. Volcanol. 54, 573589.Google Scholar
Shreve, R. L. 1968 The Blackhawk landslide. Geol. Soc. Am. Bull. 79, 653658.CrossRefGoogle Scholar
Siavoshi, S., Orpe, A. V. & Kudrolli, A. 2006 Friction of a slider on a granular layer: nonmonotonic thickness dependence and effect of boundary conditions. Phys. Rev. E 73, 010301.CrossRefGoogle ScholarPubMed
Siebert, L. 1984 Large volcanic debris avalanches: characteristics of source areas, deposits and associated eruptions. J. Volcanol. Geotherm. 22, 163197.CrossRefGoogle Scholar
Straub, S. 1996 Self-organisation in the rapid flow of granular material: evidence for a major flow mechanism. Geol. Rundsch. 85, 8591.CrossRefGoogle Scholar
Thomas, N. 2000 Reverse and intermediate segregation of large beads in dry granular media. Phys. Rev. E 62, 961974.Google ScholarPubMed
Thornton, A. R., Gray, J. M. N. T. & Hogg, A. J. 2006 A three-phase mixture theory for particle size segregation in shallow granular free-surface flows. J. Fluid Mech. 550, 125.CrossRefGoogle Scholar
Vallance, J. W. & Savage, S. B. 2000 Particle segregation in granular flows down chute. In IUTAM Symp. on segregation in granular materials (ed. Rosato, A. D. & Blackmore, D. L.), pp. 3151. Kluwer.Google Scholar
Walton, O. R. & Braun, R. L. 1986 Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30, 949980.CrossRefGoogle Scholar
Wassgren, C. R. 1996 Vibration of granular materials. PhD thesis, California Institute of Technology.Google Scholar
Zenit, R. 2005 Computer simulations of the collapse of a granular column. Phys. Fluids 17, 031703.CrossRefGoogle Scholar