Published online by Cambridge University Press: 29 March 2006
Using the method of matched asymptotic expansions, an expansion of the velocity potential for steady incompressible flow has been obtained to order ε4 for slender bodies of revolution at an angle of attack by representing the potential due to the body as a superposition of potentials of sources and doublets distributed along a segment of the axis inside the body excluding an interval near each end of the body. Also, expansions of the coefficients of longitudinal virtual mass and lateral virtual mass have been found. The pressure distributions over an ellipsoid of revolution of thickness ratio ε = 0·3 at zero angle of attack and at an angle of attack of 3° obtained by the present method are compared with results obtained from the exact theory and that of Van Dyke. The virtual-mass coefficients are also compared with those obtained from the exact theory and are found to be in good agreement up to ε = 0·3.