Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-19T11:54:22.444Z Has data issue: false hasContentIssue false

Hydrodynamics of binary mixtures of granular gases with stochastic coefficient of restitution

Published online by Cambridge University Press:  28 September 2015

D. Serero*
Affiliation:
Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
N. Gunkelmann
Affiliation:
Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany Physics Department and Research Center OPTIMAS, University Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
T. Pöschel
Affiliation:
Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052 Erlangen, Germany
*
Email address for correspondence: [email protected]

Abstract

A hydrodynamic description of dilute binary gas mixtures comprising smooth inelastic spheres interacting by binary collisions with a random coefficient of restitution is presented. Constitutive relations are derived using the Chapman–Enskog perturbative method, associated with a computer-aided method to allow high-order Sonine polynomial expansions. The transport coefficients obtained are checked against DSMC simulations. The resulting equations are applied to the analysis of a vertically vibrated system. It is shown that differences in the shape of the distributions of the coefficient of restitution are sufficient to produce partial segregation.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnarson, B. O. & Willits, J. T. 1998 Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity. Phys. Fluids 10 (6), 13241328.Google Scholar
Aspelmeier, T. & Zippelius, A. 2000 Dynamics of a one-dimensional granular gas with a stochastic coefficient of restitution. Physica A 282 (3–4), 450474.Google Scholar
Bannerman, M. N., Sargant, R. & Lue, L. 2011 Dynamo: a free o(n) general event-driven simulator. J. Comput. Chem. 32, 33293338.Google Scholar
Barrat, A. & Trizac, E. 2003 Random inelasticity and velocity fluctuations in a driven granular gas. Eur. Phys. J. E 11 (1), 99104.CrossRefGoogle Scholar
Barrat, A., Trizac, E. & Fuchs, J. N. 2001 Heated granular fluids: the random restitution coefficient approach. Eur. Phys. J. E 5, 161170.Google Scholar
Bird, G. A. 1976 Molecular Gas Dynamics. Clarendon.Google Scholar
Brey, J. J., Dufty, J. W., Kim, C. S. & Santos, A. 1998 Hydrodynamics for granular flow at low density. Phys. Rev. E 58 (4), 46384653.CrossRefGoogle Scholar
Brey, J. J. & Ruiz-Montero, M. J. 2004 Heat flux and upper boundary condition in an open fluidized granular gas. Europhys. Lett. 66 (6), 805811.Google Scholar
Brey, J. J., Ruiz-Montero, M. J. & Moreno, F. 2001 Hydrodynamics of an open vibrated granular system. Phys. Rev. E 63 (6), 061305.Google Scholar
Brey, J. J., Ruiz-Montero, M. J. & Moreno, F. 2005 Energy partition and segregation for an intruder in a vibrated granular system under gravity. Phys. Rev. Lett. 95 (9), 098001.Google Scholar
Brito, R., Enriquez, H., Godoy, S. & Soto, R. 2008 Segregation induced by inelasticity in a vibrofluidized granular mixture. Phys. Rev. E 77 (6), 061301.Google Scholar
Brito, R. & Soto, R. 2009 Competition of Brazil nut effect, buoyancy, and inelasticity induced segregation in a granular mixture. Eur. Phys. J. 179, 207219.Google Scholar
Carrillo, J. A., Cordier, S. & Toscani, G. 2009 Over-populated tails for conservative-in-the-mean inelastic maxwell models. Discrete Contin. Dyn. Syst. Ser. A 24, 5981.Google Scholar
Chapman, S & Cowling, T. G. 1970 The Mathematical Theory of Nonuniform Gases. Cambridge University Press.Google Scholar
Dufty, J. W. & Brey, J. J. 2011 Choosing hydrodynamic fields. Math. Model. Nat. Phenom. 6 (4), 1936.Google Scholar
Farkas, Z., Szalai, F., Wolf, D. E. & Vicsek, T. 2002 Segregation of binary mixtures by a ratchet mechanism. Phys. Rev. E 65, 022301.Google Scholar
Garzó, V. 2006 Segregation in granular binary mixtures: thermal diffusion. Europhys. Lett. 75 (4), 521527.Google Scholar
Garzó, V. 2008 Brazil-nut effect versus reverse Brazil-nut effect in a moderately dense granular fluid. Phys. Rev. E 78, 020301.Google Scholar
Garzo, V. 2011 Thermal diffusion segregation in granular binary mixtures described by the enskog equation. New J. Phys. 13, 055020.Google Scholar
Garzo, V. & Dufty, J. W. 2002 Hydrodynamics for a granular binary mixture at low density. Phys. Fluids 14 (4), 14761490.CrossRefGoogle Scholar
Garzo, V. & Montanero, J. M. 2004 Diffusion of impurities in a granular gas. Phys. Rev. E 69 (2), 021301.Google Scholar
Garzo, V. & Trizac, E. 2011 Non-equilibrium phase transition in a sheared granular mixture. Europhys. Lett. 94 (5), 50009.Google Scholar
Garzo, V., Vega Reyes, F. & Maria Montanero, J. 2009 Modified sonine approximation for granular binary mixtures. J. Fluid Mech. 623, 387411.Google Scholar
Giese, G. & Zippelius, A. 1996 Collision properties of one-dimensional granular particles with internal degrees of freedom. Phys. Rev. E 54 (5), 48284837.Google Scholar
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267293.Google Scholar
Goldhirsch, I. & Ronis, D. 1983a Theory of thermophoresis I: general considerations and mode coupling analysis. Phys. Rev. A 27, 16161634.Google Scholar
Goldhirsch, I. & Ronis, D. 1983b Theory of thermophoresis II: low-density behavior. Phys. Rev. A 27, 16351656.Google Scholar
Goldhirsch, I. & Zanetti, G. 1993 Clustering instability in dissipative gases. Phys. Rev. Lett. 70 (11), 16191622.CrossRefGoogle ScholarPubMed
Grad, H. 1949 On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths 2, 331407.Google Scholar
de Groot, S. R. & Mazur, P. 1969 Non-Equilibrium Thermodynamics. North-Holland.Google Scholar
Gunkelmann, N., Montaine, M. & Poschel, T. 2014 Stochastic behavior of the coefficient of normal restitution. Phys. Rev. E 89 (2), 022205.Google Scholar
Hatzes, A., Bridges, F. G. & Lin, D. N. C. 1988 Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astron. Soc. 231, 10911115.Google Scholar
Hsiau, S. S. & Hunt, M. L. 1996 Granular thermal diffusion in flows of binary-sized mixtures. Acta Mechanica 114 (1–4), 121137.Google Scholar
Jaeger, H. M., Nagel, S. R. & Behringer, R. P. 1996 Granular solids, liquids, and gases. Rev. Mod. Phys. 68 (4), 12591273.Google Scholar
Jenkins, J. T. & Yoon, D. K. 2002 Segregation in binary mixtures under gravity. Phys. Rev. Lett. 88 (19), 194301.Google Scholar
Kondic, L., Hartley, R. R., Tennakoon, S. G. K., Painter, B. & Behringer, R. P. 2003 Segregation by friction. Europhys. Lett. 61 (6), 742748.Google Scholar
Kudrolli, A. 2004 Size separation in vibrated granular matter. Rep. Prog. Phys. 67, 209247.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.Google Scholar
Lifshitz, J. M. & Kolsky, H. 1964 Some experiments on anelastic rebound. J. Mech. Phys. Solids 12, 3543.Google Scholar
Lutsko, J. F. 2004 Rheology of dense polydisperse granular fluids under shear. Phys. Rev. E 70 (6), 061101.Google Scholar
Montaine, M., Heckel, M., Kruelle, C., Schwager, T. & Pöschel, T. 2011 Coefficient of restitution as a fluctuating quantity. Phys. Rev. E 84, 041306.CrossRefGoogle ScholarPubMed
Noskowicz, S. H., Bar-Lev, O., Serero, D. & Goldhirsch, I. 2007 Computer-aided kinetic theory and granular gases. Europhys. Lett. 79 (6), 60001.Google Scholar
Ottino, J. M. & Khakhar, D. V. 2000 Mixing and segregation of granular materials. Annu. Rev. Fluid Mech. 32, 5591.Google Scholar
Pöschel, T., Brilliantov, N. V. & Schwager, T. 2003 Long-time behavior of granular gases with impact-velocity dependent coefficient of restitution. Physica A 325, 274283.Google Scholar
Rapaport, D. C. 2001 Mechanism for granular segregation. Phys. Rev. E 64 (6), 061304.Google Scholar
Schröter, M., Ulrich, S., Kreft, J., Swift, J. B. & Swinney, H. L. 2006 Mechanisms in the size segregation of a binary granular mixture. Phys. Rev. E 74 (1), 011307.Google Scholar
Schwager, T. & Pöschel, T. 1998 Coefficient of restitution of viscous particles and cooling rate of granular gases. Phys. Rev. E 57, 650654.Google Scholar
Serero, D.2009 Kinetic theory of granular gas mixtures. PhD thesis, Tel Aviv University.Google Scholar
Serero, D., Goldhirsch, I., Noskowicz, S. H. & Tan, M. L. 2006 Hydrodynamics of granular gases and granular gas mixtures. J. Fluid Mech. 554, 237258.Google Scholar
Serero, D., Noskowicz, S. H. & Goldhirsch, I. 2007 Exact versus mean field solutions for granular gas mixtures. Granul. Matt. 10 (1), 3746.Google Scholar
Serero, D., Noskowicz, S. H. & Goldhirsch, I. 2011 Theory of dilute binary granular gas mixtures. Math. Model. Nat. Phenom. 6 (1), 1747.Google Scholar
Serero, D., Noskowicz, S. H., Tan, M. L. & Goldhirsch, I. 2009 Binary granular gas mixtures: theory, layering effects and some open questions. Eur. Phys. J. 179, 221247.Google Scholar
Shinbrot, T. & Muzzio, F. J. 2000 Nonequilibrium patterns in granular mixing and segregation. Phys. Today 53, 2530.CrossRefGoogle Scholar
Trujillo, L., Alam, M. & Herrmann, H. J. 2003 Segregation in a fluidized binary granular mixture: competition between buoyancy and geometric force. Europhys. Lett. 64, 190196.Google Scholar
Ulrich, S., Schröeter, M. & Swinney, H. L. 2007 Influence of friction on granular segregation. Phys. Rev. E 76 (4), 042301.Google ScholarPubMed
Yoon, D. K. & Jenkins, J. T. 2006 The influence of different species’ granular temperatures on segregation in a binary mixture of dissipative grains. Phys. Fluids 18, 073303.Google Scholar