Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-21T07:45:12.809Z Has data issue: false hasContentIssue false

A hydrodynamic analysis of self-similar radiative ablation flows

Published online by Cambridge University Press:  05 June 2018

J.-M. Clarisse*
Affiliation:
CEA, DAM, DIF, Bruyères-le-Châtel, F-91297 Arpajon, France
J.-L. Pfister
Affiliation:
ONERA-The French Aerospace Lab, 8, rue des Vertugadins, F-92190 Meudon, France
S. Gauthier
Affiliation:
ChebyPhys, F-26100 Romans-sur-Isère, France
C. Boudesocque-Dubois
Affiliation:
CEA, DAM, DIF, Bruyères-le-Châtel, F-91297 Arpajon, France
*
Email address for correspondence: [email protected]

Abstract

Self-similar solutions to the compressible Euler equations with nonlinear conduction are considered as particular instances of unsteady radiative deflagration – or ‘ablation’ – waves with the goal of characterizing the actual hydrodynamic properties that such flows may present. The chosen family of solutions, corresponding to the ablation of an initially quiescent perfectly cold and homogeneous semi-infinite slab of inviscid compressible gas under the action of increasing external pressures and radiation fluxes, is well suited to the description of the early ablation of a target by gas-filled cavity X-rays in experiments of high energy density physics. These solutions are presently computed by means of a highly accurate numerical method for the radiative conduction model of a fully ionized plasma under the approximation of a non-isothermal leading shock wave. The resulting set of solutions is unique for its high fidelity description of the flows down to their finest scales and its extensive exploration of external pressure and radiative flux ranges. Two different dimensionless formulations of the equations of motion are put forth, yielding two classifications of these solutions which are used for carrying out a quantitative hydrodynamic analysis of the corresponding flows. Based on the main flow characteristic lengths and on standard characteristic numbers (Mach, Péclet, stratification and Froude numbers), this analysis points out the compressibility and inhomogeneity of the present ablative waves. This compressibility is further analysed to be too high, whether in terms of flow speed or stratification, for the low Mach number approximation, often used in hydrodynamic stability analyses of ablation fronts in inertial confinement fusion (ICF), to be relevant for describing these waves, and more specifically those with fast expansions which are of interest in ICF. Temperature stratification is also shown to induce, through the nonlinear conductivity, supersonic upstream propagation of heat-flux waves, besides a modified propagation of quasi-isothermal acoustic waves, in the flow conduction regions. This description significantly departs from the commonly admitted depiction of a quasi-isothermal conduction region where wave propagation is exclusively ascribed to isothermal acoustics and temperature fluctuations are only diffused.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abéguilé, F., Boudesocque-Dubois, C., Clarisse, J.-M., Gauthier, S. & Saillard, Y. 2006 Linear perturbation amplification in self-similar ablation flows of inertial confinement fusion. Phys. Rev. Lett. 97, 035002.Google Scholar
Atzeni, S. & Meyer-ter-Vehn, J. 2004 The Physics of Inertial Fusion. Oxford University Press.CrossRefGoogle Scholar
Bajac, J.1973 Etude d’une classe de solutions des écoulements plan compressibles avec transfert radiatif. Tech. Rep. CEA-R-4482. Commissariat à l’Energie Atomique.Google Scholar
Betti, R., Goncharov, V. N., Mccrory, R. L., Sorotokin, P. & Verdon, C. P. 1996 Self-consistent stability analysis of ablation fronts in inertial confinement fusion. Phys. Plasmas 3 (5), 21222128.CrossRefGoogle Scholar
Boudesocque-Dubois, C.2000 Perturbations linéaires d’une solution autosemblable de l’hydrodynamique avec conduction non linéaire. PhD thesis, Université Pierre et Marie Curie/Paris 6.Google Scholar
Boudesocque-Dubois, C., Clarisse, J.-M. & Gauthier, S. 2001 Hydrodynamic stability of ablation fronts: linear perturbation of a self-similar solution. In ECLIM 2000: 26th European Conference on Laser Interaction with Matter (ed. Kálal, M., Rohlena, K. & Šiňor, M.), Proceedings of SPIE, Vol. 4424, pp. 220223. SPIE.Google Scholar
Boudesocque-Dubois, C., Gauthier, S. & Clarisse, J.-M. 2008 Self-similar solutions of unsteady ablation flows in inertial confinement fusion. J. Fluid Mech. 603, 151178.Google Scholar
Boudesocque-Dubois, C., Lombard, V., Gauthier, S. & Clarisse, J.-M. 2013 An adaptive multidomain Chebyshev method for nonlinear eigenvalue problems: application to self-similar solutions of gas dynamics equations with nonlinear heat conduction. J. Comput. Phys. 235, 723741.Google Scholar
Brun, L., Dautray, R., Delobeau, F., Patou, C., Perrot, F., Reisse, J.-M., Sitt, B. & Watteau, J.-P. 1977 Physical models and mathematical simulation of laser-driven implosion and their relations with experiments. In Laser Interaction and Related Plasma Phenomena (ed. Schwarz, H. J. & Hora, H.), vol. 4B, pp. 10591080. Plenum Publising Corp.CrossRefGoogle Scholar
Buresi, E. et al. 1986 Laser program development at CEL-V: overview of recent experimental results. Laser Part. Beams 4, 531544.Google Scholar
Bychenkov, V. Yu. & Rozmus, W. 2015 Radiative heat transport instability in a laser produced inhomogeneous plasma. Phys. Plasmas 22, 082705.CrossRefGoogle Scholar
Bychkov, V., Modestov, M. & Law, C. K. 2015 Combustion phenomena in modern physics: I. Inertial confinement fusion. Prog. Energy Combust. Sci. 47, 3259.Google Scholar
Chu, B.-T. & Kovásznay, L. S. G. 1958 Non-linear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 494514.Google Scholar
Clarisse, J.-M., Boudesocque-Dubois, C. & Gauthier, S. 2008 Linear perturbation response of self-similar ablative flows relevant to inertial confinement fusion. J. Fluid Mech. 609, 148.CrossRefGoogle Scholar
Clarisse, J.-M., Gauthier, S., Dastugue, L., Vallet, A. & Schneider, N. 2016 Transient effects in unstable ablation fronts and mixing layers in HEDP. Phys. Scr. 91, 074005.CrossRefGoogle Scholar
Coggeshall, S. V. & Axford, R. A. 1986 Lie group invariance properties of radiation hydrodynamics equations and their associated similarity solutions. Phys. Fluids 29, 23982420.Google Scholar
Elliott, L. A. 1960 Similarity methods in radiation hydrodynamics. Proc. R. Soc. Lond. A 258, 287301.Google Scholar
Fraser, A. R. 1960 Radiation fronts. Proc. R. Soc. Lond. A 245, 536545.Google Scholar
Garnier, J., Malinié, G., Saillard, Y. & Cherfils-Cléouin, C. 2006 Self-similar solutions for nonlinear radiation diffusion equation. Phys. Plasmas 13, 092703.Google Scholar
Gauthier, S., Le Creurer, B., Abéguilé, F., Boudesocque-Dubois, C. & Clarisse, J.-M. 2005 A self-adaptive domain decomposition method with Chebyshev method. Intl J. Pure Appl. Maths 24, 553577.Google Scholar
Ghoniem, A. F., Kamel, M. M., Berger, S. A. & Oppenheim, A. K. 1982 Effects of internal heat transfer on the structure of self-similar blast waves. J. Fluid Mech. 117, 473491.Google Scholar
Goncharov, V. N., Skupsky, S., Boehly, T. R., Knauer, J. P., Mckenty, P., Smalyuk, V. A., Town, R. P., Gotchev, O. V., Betti, R. & Meyerhofer, D. D. 2000 A model of laser imprinting. Phys. Plasmas 7 (5), 20622068.CrossRefGoogle Scholar
Hammer, J. H. & Rosen, M. D. 2003 A consistent approach to solving the radiation diffusion equation. Phys. Plasmas 10, 18291845.Google Scholar
Ishizaki, R. & Nishihara, K. 1997 Propagation of a rippled shock wave driven by nonuniform laser ablation. Phys. Rev. Lett. 78 (10), 19201923.Google Scholar
Kovásznay, L. S. G. 1953 Turbulence in supersonic flow. J. Aero. Sci. 20 (10), 657674.Google Scholar
Kull, H. J. & Anisimov, S. I. 1986 Ablative stabilization in the incompressible Rayleigh–Taylor instability. Phys. Fluids 29, 20672075.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.Google Scholar
Langhaar, H. L. 1951 Dimensional Analysis and Theory of Models. Wiley.Google Scholar
Lindl, J., Landen, O., Edwards, J., Moses, E. & NIC Team 2014 Review of the National Ignition Campaign 2009-2012. Phys. Plasmas 21, 020501.Google Scholar
Lombard, V., Gauthier, S., Clarisse, J.-M. & Boudesocque-Dubois, C. 2008 Kovásznay modes in stability of self-similar ablation flows of ICF. Europhys. Lett. 84, 25001.Google Scholar
Marshak, R. 1958 Effect of radiation on shock wave behavior. Phys. Fluids 1 (1), 2429.Google Scholar
Mihalas, D. & Mihalas, B. W. 1984 Foundations of Radiation Hydrodynamics. Oxford University Press.Google Scholar
Murakami, M., Sakaiya, T. & Sanz, J. 2007 Self-similar ablative flow of nonstationary accelerating foil due to nonlinear heat conduction. Phys. Plasmas 14, 022707.Google Scholar
NiCastro, J. R. A. J. 1970 Similarity analysis of the radiative gas dynamics equations with spherical symmetry. Phys. Fluids 13, 20002006.Google Scholar
Nishihara, K. 1982 Scaling laws of plasma ablation by thermal radiation. Japan. J. Appl. Phys. 21, L571L573.CrossRefGoogle Scholar
Nozaki, K. & Nishihara, K. 1980 Deflagration waves supported by thermal radiation. J. Phys. Soc. Japan 48 (3), 993997.CrossRefGoogle Scholar
Pakula, R. & Sigel, R. 1985 Self-similar expansion of dense matter due to heat transfer by nonlinear conduction. Phys. Fluids 28, 232244.Google Scholar
Paolucci, S.1982 On the filtering of sound from the Navier–Stokes equations. Tech. Rep. SAND-82-8257. Sandia National Laboratories.Google Scholar
Piriz, A. R., Sanz, J. & Ibañez, L. F. 1997 Rayleigh–Taylor instability of steady ablation fronts: The discontinuity model revisited. Phys. Plasmas 4 (4), 11171126.Google Scholar
Reinicke, P. & Meyer-ter-Vehn, J. 1991 The point explosion with heat conduction. Phys. Fluids A 3, 18071818.CrossRefGoogle Scholar
Saillard, Y. 2000 Hydrodynamique de l’implosion d’une cible FCI. C. R. Acad. Sci. Paris IV t. 1, 705718.Google Scholar
Saillard, Y., Arnault, P. & Silvert, V. 2010 Principles of the radiative ablation modeling. Phys. Plasmas 17, 123302.CrossRefGoogle Scholar
Samarskiĭ, A. A., Kurdyumov, S. P. & Volosevich, P. P. 1965 Travelling waves in a medium with non-linear heat conduction. USSR Comput. Maths. Math. Phys. 5, 4067.CrossRefGoogle Scholar
Sanz, J., Piriz, A. R. & Tomasel, F. G. 1992 Self-similar model for tamped ablation driven by thermal radiation. Phys. Fluids B 4 (3), 683692.Google Scholar
Sedov, L. 1959 Similarity and Dimensionality in Mechanics. Academic Press.Google Scholar
Shestakov, A. I. 1999 Time-dependent simulations of point explosions with heat conduction. Phys. Fluids 11, 10911095.CrossRefGoogle Scholar
Shussman, T. & Heizler, S. I. 2015 Full self-similar solutions of the subsonic radiative heat equations. Phys. Plasmas 22, 082109.CrossRefGoogle Scholar
Velikovich, A. L., Dahlburg, J. P., Gardner, J. H. & Taylor, R. J. 1998 Saturation of perturbation growth in ablatively driven planar laser targets. Phys. Plasmas 5, 14911505.Google Scholar
Wang, K. C. 1964 The ‘piston problem’ with thermal radiation. J. Fluid Mech. 20, 447455.Google Scholar
Zel’dovich, Ya. B. & Raizer, Yu. P. 1967 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic Press.Google Scholar
Supplementary material: File

Clarisse et al. supplementary material

Clarisse et al. supplementary material 1

Download Clarisse et al. supplementary material(File)
File 1.7 MB