Hostname: page-component-f554764f5-68cz6 Total loading time: 0 Render date: 2025-04-20T18:29:34.543Z Has data issue: false hasContentIssue false

Homogeneous turbophoresis of heavy inertial particles in turbulent flow

Published online by Cambridge University Press:  26 November 2024

Jérémie Bec*
Affiliation:
Université Côte d'Azur, CNRS, Institut de Physique de Nice, 06200 Nice, France Université Côte d'Azur, Inria, CNRS, Calisto team, 06902 Sophia Antipolis, France
Robin Vallée
Affiliation:
Mines Paris, PSL University, CNRS, Cemef, 06904 Sophia Antipolis, France Schneider Electric Innovation & Technology, 38320 Eybens, France
*
Email address for correspondence: [email protected]

Abstract

Heavy particles suspended in turbulent flow possess inertia and are ejected from violent vortical structures by centrifugal forces. Once piled up along particle paths, this small-scale mechanism leads to an effective large-scale drift. This phenomenon, known as ‘turbophoresis’, causes particles to leave highly turbulent regions and migrate towards calmer regions, explaining why particles transported by non-homogeneous flows tend to concentrate near the minima of turbulent kinetic energy. It is demonstrated here that turbophoretic effects are just as crucial in statistically homogeneous flows. Although the average turbulent activity is uniform, instantaneous spatial fluctuations are responsible for inertial-range inhomogeneities in the particle distribution. Direct numerical simulations are used to probe particle accelerations, specifically how they correlate to local turbulent activity, yielding an effective coarse-grained dynamics that accounts for particle detachment from the fluid and ejection from excited regions through a space- and time-dependent non-Fickian diffusion. This leads to cast fluctuations in particle distributions in terms of a scale-dependent Péclet number ${\textit {Pe}}_\ell$, which measures the importance of turbulent advection compared with inertial turbophoresis at a given scale $\ell$. Multifractal statistics of energy dissipation indicate that $ {\textit {Pe}}_\ell \sim \ell ^\delta /\tau _{p}$ with $\delta \approx 0.84$. Numerical simulations support this behaviour and emphasise the relevance of the turbophoretic Péclet number in characterising how particle distributions, including their radial distribution function, depends on $\ell$. This approach also explains the presence of voids with inertial-range sizes, and the fact that their volumes have a non-trivial distribution with a power-law tail $p(\mathcal {V}) \propto \mathcal {V}^{-\alpha }$, with an exponent $\alpha$ that tends to 2 as ${\textit {Pe}}_\ell \to 0$.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ariki, T., Yoshida, K., Matsuda, K. & Yoshimatsu, K. 2018 Scale-similar clustering of heavy particles in the inertial range of turbulence. Phys. Rev. E 97, 033109.CrossRefGoogle ScholarPubMed
Baker, L., Frankel, A., Mani, A. & Coletti, F. 2017 Coherent clusters of inertial particles in homogeneous turbulence. J. Fluid Mech. 833, 364398.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Balkovsky, E., Falkovich, G. & Fouxon, A. 2001 Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett. 86, 27902793.CrossRefGoogle ScholarPubMed
Basset, T., Viggiano, B., Barois, T., Gibert, M., Mordant, N., Cal, R.B., Volk, R. & Bourgoin, M. 2022 Entrainment, diffusion and effective compressibility in a self-similar turbulent jet. J. Fluid Mech. 947, A29.CrossRefGoogle Scholar
Bec, J., Biferale, L., Boffetta, G., Celani, A., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2006 Acceleration statistics of heavy particles in turbulence. J. Fluid Mech. 550, 349358.CrossRefGoogle Scholar
Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2007 a Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98, 084502.CrossRefGoogle ScholarPubMed
Bec, J., Biferale, L., Cencini, M., Lanotte, A.S. & Toschi, F. 2011 Spatial and velocity statistics of inertial particles in turbulent flows. In Journal of Physics: Conference Series (ed. M. Abel, E. Bodenschatz & F. Toschi), vol. 333, p. 012003.Google Scholar
Bec, J., Cencini, M. & Hillerbrand, R. 2007 b Clustering of heavy particles in random self-similar flow. Phys. Rev. E 75, 025301.CrossRefGoogle ScholarPubMed
Bec, J. & Chétrite, R. 2007 Toward a phenomenological approach to the clustering of heavy particles in turbulent flows. New J. Phys. 9, 77.CrossRefGoogle Scholar
Bec, J., Gustavsson, K. & Mehlig, B. 2024 Statistical models for the dynamics of heavy particles in turbulence. Annu. Rev. Fluid Mech. 56, 189213.CrossRefGoogle Scholar
Belan, S. 2016 Concentration of diffusional particles in viscous boundary sublayer of turbulent flow. Physica A 443, 128136.CrossRefGoogle Scholar
Belan, S., Fouxon, I. & Falkovich, G. 2014 Localization-delocalization transitions in turbophoresis of inertial particles. Phys. Rev. Lett. 112, 234502.CrossRefGoogle ScholarPubMed
Biferale, L., Boffetta, G., Celani, A., Devenish, B.J., Lanotte, A. & Toschi, F. 2004 Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Phys. Rev. Lett. 93, 064502.CrossRefGoogle ScholarPubMed
Boffetta, G., De Lillo, F. & Gamba, A. 2004 Large scale inhomogeneity of inertial particles in turbulent flows. Phys. Fluids 16, L20L23.CrossRefGoogle Scholar
Borgas, M.S. 1993 The multifractal Lagrangian nature of turbulence. Phil. Trans. R. Soc. Lond. A 342, 379411.Google Scholar
Bragg, A.D., Ireland, P.J. & Collins, L.R. 2015 Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence. Phys. Rev. E 92 (2), 023029.CrossRefGoogle ScholarPubMed
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54, 159189.CrossRefGoogle Scholar
Buaria, D., Pumir, A., Bodenschatz, E. & Yeung, P.-K. 2019 Extreme velocity gradients in turbulent flows. New J. Phys. 21, 043004.CrossRefGoogle Scholar
Caporaloni, M., Tampieri, F., Trombetti, F. & Vittori, O. 1975 Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32, 565568.2.0.CO;2>CrossRefGoogle Scholar
Coleman, S.W. & Vassilicos, J.C. 2009 A unified sweep-stick mechanism to explain particle clustering in two-and three-dimensional homogeneous, isotropic turbulence. Phys. Fluids 21, 113301.CrossRefGoogle Scholar
Cristelli, M., Batty, M. & Pietronero, L. 2012 There is more than a power law in Zipf. Sci. Rep. 2, 812.CrossRefGoogle Scholar
De Lillo, F., Cencini, M., Musacchio, S. & Boffetta, G. 2016 Clustering and turbophoresis in a shear flow without walls. Phys. Fluids 28, 035104.CrossRefGoogle Scholar
De Marzo, G., Gabrielli, A., Zaccaria, A. & Pietronero, L. 2021 Dynamical approach to Zipf's law. Phys. Rev. Res. 3, 013084.CrossRefGoogle Scholar
Eaton, J.K. & Fessler, J.R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
Falkovich, G., Fouxon, A. & Stepanov, M. 2002 Acceleration of rain initiation by cloud turbulence. Nature 419, 151154.CrossRefGoogle ScholarPubMed
Falkovich, G., Fouxon, A. & Stepanov, M. 2003 Statistics of turbulence-induced fluctuations of particle concentration. In Sedimentation and Sediment Transport (ed. A. Gyr & W. Kinzelbach), pp. 155–158. Springer.CrossRefGoogle Scholar
Ferry, J. & Balachandar, S. 2001 A fast Eulerian method for disperse two-phase flow. Intl J. Multiphase Flow 27, 11991226.CrossRefGoogle Scholar
Fevrier, P., Simonin, O. & Squires, K.D. 2005 Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study. J. Fluid Mech. 533, 146.CrossRefGoogle Scholar
Fouxon, I., Schmidt, L., Ditlevsen, P., van Reeuwijk, M. & Holzner, M. 2018 Inhomogeneous growth of fluctuations of concentration of inertial particles in channel turbulence. Phys. Rev. Fluids 3, 064301.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Gaite, J. 2005 Zipf's law for fractal voids and a new void-finder. Eur. Phys. J. B 47, 9398.CrossRefGoogle Scholar
Gerosa, F.A., Méheut, H. & Bec, J. 2023 Clusters of heavy particles in two-dimensional Keplerian turbulence. Eur. Phys. J. Plus 138, 9.CrossRefGoogle Scholar
Gorokhovski, M. & Zamansky, R. 2018 Modeling the effects of small turbulent scales on the drag force for particles below and above the Kolmogorov scale. Phys. Rev. Fluids 3, 034602.CrossRefGoogle Scholar
Goto, S. & Vassilicos, J.C. 2006 Self-similar clustering of inertial particles and zero-acceleration points in fully developed two-dimensional turbulence. Phys. Fluids 18, 115103.CrossRefGoogle Scholar
Goto, S. & Vassilicos, J.C. 2008 Sweep-stick mechanism of heavy particle clustering in fluid turbulence. Phys. Rev. Lett. 100, 054503.CrossRefGoogle ScholarPubMed
Gotoh, T. & Fukayama, D. 2001 Pressure spectrum in homogeneous turbulence. Phys. Rev. Lett. 86, 37753778.CrossRefGoogle ScholarPubMed
Gustavsson, K., Meneguz, E., Reeks, M.W. & Mehlig, B 2012 Inertial-particle dynamics in turbulent flows: caustics, concentration fluctuations and random uncorrelated motion. New J. Phys. 14, 115017.CrossRefGoogle Scholar
Hartlep, T. & Cuzzi, J.N. 2020 Cascade model for planetesimal formation by turbulent clustering. Astrophy. J. 892, 120.CrossRefGoogle Scholar
Hartlep, T., Cuzzi, J.N. & Weston, B. 2017 Scale dependence of multiplier distributions for particle concentration, enstrophy, and dissipation in the inertial range of homogeneous turbulence. Phys. Rev. E 95, 033115.CrossRefGoogle ScholarPubMed
Henry, C., Minier, J.-P. & Lefèvre, G. 2012 Towards a description of particulate fouling: from single particle deposition to clogging. Adv. Colloid Interface Sci. 185, 3476.CrossRefGoogle ScholarPubMed
Hill, R.J. 2002 a Length scales of acceleration for locally isotropic turbulence. Phys. Rev. Lett. 89 (17), 174501.CrossRefGoogle ScholarPubMed
Hill, R.J. 2002 b Scaling of acceleration in locally isotropic turbulence. J. Fluid Mech. 452, 361370.CrossRefGoogle Scholar
Hill, R.J. & Wilczak, J.M. 1995 Pressure structure functions and spectra for locally isotropic turbulence. J. Fluid Mech. 296, 247269.CrossRefGoogle Scholar
Hogan, R.C., Cuzzi, J.N. & Dobrovolskis, A.R. 1999 Scaling properties of particle density fields formed in simulated turbulent flows. Phys. Rev. E 60, 16741680.CrossRefGoogle ScholarPubMed
Homann, H., Dreher, J. & Grauer, R. 2007 Impact of the floating-point precision and interpolation scheme on the results of DNS of turbulence by pseudo-spectral codes. Comput. Phys. Commun. 177, 560565.CrossRefGoogle Scholar
Johansen, A., Jacquet, E., Cuzzi, J.N., Morbidelli, A. & Gounelle, M. 2015 New paradigms for asteroid formation. In Asteroids IV (ed. P. Michel et al.), pp. 471–492. Univ. of Arizona.CrossRefGoogle Scholar
Johansen, A., Oishi, J.S., Mac Low, M.-M., Klahr, H., Henning, T. & Youdin, A. 2007 Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 10221025.CrossRefGoogle ScholarPubMed
Jonas, P.R. 1996 Turbulence and cloud microphysics. Atmos. Res. 40, 283306.CrossRefGoogle Scholar
Kolmogorov, A.N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.CrossRefGoogle Scholar
Kostinski, A.B. & Shaw, R.A. 2001 Scale-dependent droplet clustering in turbulent clouds. J. Fluid Mech. 434, 389398.CrossRefGoogle Scholar
Kuerten, J.G.M. & Vreman, A.W. 2005 Can turbophoresis be predicted by large-eddy simulation? Phys. Fluids 17, 011701.CrossRefGoogle Scholar
Lawson, J.M., Bodenschatz, E., Knutsen, A.N., Dawson, J.R. & Worth, N.A. 2019 Direct assessment of Kolmogorov's first refined similarity hypothesis. Phys. Rev. Fluids 4, 022601.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Matsuda, K., Schneider, K. & Yoshimatsu, K. 2021 Scale-dependent statistics of inertial particle distribution in high Reynolds number turbulence. Phys. Rev. Fluids 6, 064304.CrossRefGoogle Scholar
Minier, J.-P. 2016 Statistical descriptions of polydisperse turbulent two-phase flows. Phys. Rep. 665, 1122.CrossRefGoogle Scholar
Mitra, D., Haugen, N.E.L. & Rogachevskii, I. 2018 Turbophoresis in forced inhomogeneous turbulence. Eur. Phys. J. Plus 133, 35.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoïanalysis. Phys. Fluids 22, 103304.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2012 Analyzing preferential concentration and clustering of inertial particles in turbulence. Intl J. Multiphase Flow 40, 118.CrossRefGoogle Scholar
Morrison, H., et al. 2020 Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Syst. 12, e2019MS001689.CrossRefGoogle ScholarPubMed
Nelkin, M. 1990 Multifractal scaling of velocity derivatives in turbulence. Phys. Rev. A 42, 72267229.CrossRefGoogle ScholarPubMed
Obukhov, A.M. & Yaglom, A.M. 1951 The microstructure of turbulent flow. Prikl. Mat. Mekh. 15, 326.Google Scholar
Oka, S. & Goto, S. 2021 Generalized sweep-stick mechanism of inertial-particle clustering in turbulence. Phys. Rev. Fluids 6, 044605.CrossRefGoogle Scholar
Pan, Y., Chamecki, M. & Isard, S.A. 2014 Large-eddy simulation of turbulence and particle dispersion inside the canopy roughness sublayer. J. Fluid Mech. 753, 499534.CrossRefGoogle Scholar
Petersen, A., Baker, L. & Coletti, F. 2019 Experimental study of inertial particles clustering and settling in homogeneous turbulence. J. Fluid Mech. 864, 925970.CrossRefGoogle Scholar
Pinsky, M.B. & Khain, A.P. 1997 Turbulence effects on droplet growth and size distribution in clouds – a review. J. Aerosol Sci. 28, 11771214.CrossRefGoogle Scholar
Raynal, F., Bourgoin, M., Cottin-Bizonne, C., Ybert, C. & Volk, R. 2018 Advection and diffusion in a chemically induced compressible flow. J. Fluid Mech. 847, 228243.CrossRefGoogle Scholar
Reade, W.C. & Collins, L.R. 2000 A numerical study of the particle size distribution of an aerosol undergoing turbulent coagulation. J. Fluid Mech. 415, 4564.CrossRefGoogle Scholar
Reeks, M.W. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14, 729739.CrossRefGoogle Scholar
Reeks, M.W. 1992 On the continuum equations for dispersed particles in nonuniform flows. Phys. Fluids A 4, 12901303.CrossRefGoogle Scholar
Reeks, M.W., Fabbro, L. & Soldati, A. 2006 In search of random uncorrelated particle motion (RUM) in a simple random flow field. In Proc. 2006 ASME Joint US European Fluids Engineering Summer Meeting (ed. M. Francois & N. Zhang), pp. 1755–1762. Fluids Engineering Division Summer Meeting.CrossRefGoogle Scholar
Sahu, S., Hardalupas, Y. & Taylor, A.M.K.P. 2018 Interaction of droplet dispersion and evaporation in a polydispersed spray. J. Fluid Mech. 846, 3781.CrossRefGoogle Scholar
Sardina, G., Schlatter, P., Brandt, L., Picano, F. & Casciola, C.M. 2012 Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699, 5078.CrossRefGoogle Scholar
Saw, E.-W., Debue, P., Kuzzay, D., Daviaud, F. & Dubrulle, B. 2018 On the universality of anomalous scaling exponents of structure functions in turbulent flows. J. Fluid Mech. 837, 657669.CrossRefGoogle Scholar
Sawford, B.L., Yeung, P.K., Borgas, M.S., Vedula, P., La Porta, A., Crawford, A.M. & Bodenschatz, E. 2003 Conditional and unconditional acceleration statistics in turbulence. Phys. Fluids 15, 34783489.CrossRefGoogle Scholar
Schmidt, L., Fouxon, I. & Holzner, M. 2017 Inertial particles distribute in turbulence as Poissonian points with random intensity inducing clustering and supervoiding. Phys. Rev. Fluids 2, 074302.CrossRefGoogle Scholar
Seuront, L., Schmitt, F. & Lagadeuc, Y. 2001 Turbulence intermittency, small-scale phytoplankton patchiness and encounter rates in plankton: where do we go from here? Deep-Sea Res. 48, 11991215.CrossRefGoogle Scholar
Shaw, R.A. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183227.CrossRefGoogle Scholar
Sreenivasan, K.R. & Kailasnath, P. 1993 An update on the intermittency exponent in turbulence. Phys. Fluids A 5, 512514.CrossRefGoogle Scholar
Sumbekova, S., Cartellier, A., Aliseda, A. & Bourgoin, M. 2017 Preferential concentration of inertial sub-Kolmogorov particles: the roles of mass loading of particles, Stokes numbers, and Reynolds numbers. Phys. Rev. Fluids 2, 024302.CrossRefGoogle Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.CrossRefGoogle Scholar
Wilkinson, M., Mehlig, B. & Bezuglyy, V. 2006 Caustic activation of rain showers. Phys. Rev. Lett. 97, 048501.CrossRefGoogle ScholarPubMed
Xu, H., Ouellette, N.T., Vincenzi, D. & Bodenschatz, E. 2007 Acceleration correlations and pressure structure functions in high-Reynolds number turbulence. Phys. Rev. Lett. 99, 204501.CrossRefGoogle ScholarPubMed
Yeung, P.-K., Pope, S.B., Lamorgese, A.G. & Donzis, D.A. 2006 Acceleration and dissipation statistics of numerically simulated isotropic turbulence. Phys. Fluids 18, 065103.CrossRefGoogle Scholar
Yeung, P.-K., Sreenivasan, K.R. & Pope, S.B. 2018 Effects of finite spatial and temporal resolution in direct numerical simulations of incompressible isotropic turbulence. Phys. Rev. Fluids 3, 064603.CrossRefGoogle Scholar
Yoshimoto, H. & Goto, S. 2007 Self-similar clustering of inertial particles in homogeneous turbulence. J. Fluid Mech. 577, 275.CrossRefGoogle Scholar