Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T00:55:09.288Z Has data issue: false hasContentIssue false

Homogeneity of turbulence generated by static-grid structures

Published online by Cambridge University Press:  11 May 2010

Ö. ERTUNÇ*
Affiliation:
Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
N. ÖZYILMAZ
Affiliation:
Institut für Technische Mechanik, TU-Clausthal, Adolph-Roemer-Strae 2A D-38678 Clausthal-Zellerfeld, Germany
H. LIENHART
Affiliation:
Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
F. DURST
Affiliation:
Centre of Advanced Fluid Mechanics, FMP Technology GmbH Am Weichselgarten 34, D-91058 Erlangen, Germany
K. BERONOV
Affiliation:
Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, Cauerstraße 4, D-91058 Erlangen, Germany
*
Email address for correspondence: [email protected]

Abstract

Homogeneity of turbulence generated by static grids is investigated with the help of hot-wire measurements in a wind-tunnel and direct numerical simulations based on the Lattice Bolztmann method. It is shown experimentally that Reynolds stresses and their anisotropy do not become homogeneous downstream of the grid, independent of the mesh Reynolds number for a grid porosity of 64%, which is higher than the lowest porosities suggested in the literature to realize homogeneous turbulence downstream of the grid. In order to validate the experimental observations and elucidate possible reasons for the inhomogeneity, direct numerical simulations have been performed over a wide range of grid porosity at a constant mesh Reynolds number. It is found from the simulations that the turbulence wake behind the symmetric grids is only homogeneous in its mean velocity but is inhomogeneous when turbulence quantities are considered, whereas the mean velocity field becomes inhomogeneous in the wake of a slightly non-uniform grid. The simulations are further analysed by evaluating the terms in the transport equation of the kinetic energy of turbulence to provide an explanation for the persistence of the inhomogeneity of Reynolds stresses far downstream of the grid. It is shown that the early homogenization of the mean velocity field hinders the homogenization of the turbulence field.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Batchelor, G. K. & Stewart, R. W. 1950 Anisotropy of the spectrum of turbulence at small wavenumbers. Q. J. Mech. Appl. Math. 3, 1.Google Scholar
Batchelor, G. K. & Townsend, A. A. 1948 a Decay of isotropic turbulence in the initial period. Proc. R. Soc. A 193, 539558.Google Scholar
Batchelor, G. K. & Townsend, A. A. 1948 b Decay of isotropic turbulence in the final period. Proc. R. Soc. A 194, 527543.Google Scholar
Batchelor, G. K. & Townsend, A. A. 1949 The nature of turbulent motion at large wavenumbers. Proc. R. Soc. A 199, 238255.Google Scholar
von Bohl, J. G. 1940 Das Verhalten paralleler Luftstrahlen. Ing. Arch. 11 (4), 295314.CrossRefGoogle Scholar
Bradshaw, P. 1964 Wind tunnel screens: flow instability and its effect on aerofoil boundary layers. J. R. Aeronaut. Soc. 68, 198.Google Scholar
Bradshaw, P. 1965 The effect of wind-tunnel screens on nominally two-dimensional boundary layers. J. Fluid Mech. 22 (4), 679687.CrossRefGoogle Scholar
Bradshaw, P. 1971 An Introduction to Turbulence and Its Measurement. Pergamon.Google Scholar
Brenner, G., Zeiser, T., Beronov, K., Lammers, P. & Bernsdorf, J. 2003 Lattice Boltzmann methods: high performance computing and engineering applications. In Parallel Computational Fluid Dynamics pp. 312. Elsevier.Google Scholar
Breuer, M. 2001 Direkte numerische Simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechner. PhD thesis, Friedrich Alexander Universität Erlangen-Nürnberg, LSTM-Erlangen, Germany.Google Scholar
Breuer, M., Bernsdorf, J., Zeiser, T. & Durst, F. 2000 Accurate computations of the laminar flow past a square cylinder based on two different methods: Lattice-Boltzmann and finite volume. Intl J. Heat Fluid Flow 21, 186196.CrossRefGoogle Scholar
Choi, K.-S. & Lumley, J. L. 2001 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 436, 5984.CrossRefGoogle Scholar
Comte-Bellot, G. & Corrsin, S. 1966 The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657.Google Scholar
Comte-Bellot, G. & Corrsin, S. 1971 Simple Eulerian time-correlation of full- and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. J. Fluid Mech. 48, 273337.CrossRefGoogle Scholar
Corrsin, S. 1944 Investigation of the behaviour of parallel two-dimensional air jets. Tech. Rep. ACR-4H24. NACA.Google Scholar
Corrsin, S. 1963 Turbulence: Experimental Methods, vol. 8. Springer.Google Scholar
Djenidi, L. 2006 Lattice-Boltzmann simulation of grid-generated turbulence. J. Fluid Mech. 552, 1335.Google Scholar
Ertunç, Ö. 2007 Experimental and numerical investigations of axisymmetric turbulence. PhD thesis, Friedrich Alexander Universität Erlangen-Nürnberg, LSTM-Erlangen, Germany. http://www.opus.ub.uni-erlangen.de/opus/volltexte/2007/537/.Google Scholar
Ertunç, Ö. & Durst, F. 2008 On the high contraction ratio anomaly of axisymmetric contraction of grid-generated turbulence. Phys. Fluids 20, 025103.CrossRefGoogle Scholar
Ferchichi, M. & Tavoularis, S. 2000 Reynolds number effects on the fine structure of uniformly sheared turbulence. Phys. Fluids 12, 29422953.CrossRefGoogle Scholar
Freund, H., Zeiser, T., Huber, F., Klemm, E., Brenner, G., Durst, F. & Emig, G. 2003 Numerical simulations of single-phase reacting flows in randomly packed fixed-bed reactors and experimental validation. Chem. Engng. Sci. 58, 903910.CrossRefGoogle Scholar
Fröhlich, J. 2006 Large Eddy Simulationen turbulenter Strömungen. B.G-Teubner.Google Scholar
Gence, J. N. 1983 Homogeneous turbulence. Annu. Rev. Fluid Mech. 15, 201222.CrossRefGoogle Scholar
Gence, J. N. & Mathieu, J. 1979 On the application of successive plain strains to grid-generated turbulence. J. Fluid Mech. 93, 501513.CrossRefGoogle Scholar
Gence, J. N. & Mathieu, J. 1980 The return to isotropy of an homogeneous turbulence having being submitted to two successive plane strains. J. Fluid Mech. 101, 555566.CrossRefGoogle Scholar
Grant, H. L. & Nisbet, I. C. T. 1957 The inhomogeneity of grid turbulence. J. Fluid Mech. 2, 263272.CrossRefGoogle Scholar
Hinze, J. O. 1975 Turbulence, 2nd edn. New York: McGraw-Hill.Google Scholar
von Kármán, T. 1937 The fundamentals of the statistical theory of turbulence. J. Aero. Sci. 4 (4), 131139.CrossRefGoogle Scholar
von Kármán, T. & Howarth, L. 1938 On the statistical theory of isotropoic turbulence. Proc. R. Soc. A 164 (917), 192215.Google Scholar
Kolmogorov, A. N. 1941 a The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci., U.S.S.R. 30, 301305.Google Scholar
Kolmogorov, A. N. 1941 b Dissipation of energy in locally isotropic turbulence. C. R. Acad. Sci. U.S.S.R. 32, 1618.Google Scholar
Lammers, P. 2004 Direkte numerische simulationen wandgebundener stroemungen kleiner Reynoldszahlen mit dem Lattice Boltzmann verfahren. PhD thesis, Friedrich Alexander Universität Erlangen-Nürnberg, LSTM-Erlangen, Germany.Google Scholar
Lavoie, P., Djenidi, L. & Antonia, R. A. 2007 Effects of initial conditions in decaying turbulence generated by passive grids. J. Fluid Mech. 585, 395420.Google Scholar
Liu, R., Ting, D. S.-K. & Rankin, G. W. 2004 On the generation of turbulence with a perforated plate. Exp. Therm. Fluid Sci. 28, 307316.Google Scholar
Loehrke, R. I. & Nagib, H. M. 1972 Experiments on management of free stream turbulence. Tech. Rep. 598. AGARD.Google Scholar
Mazellier, N. & Vassilicos, J. C. 2008 The turbulence dissipation constant is not universal because of its universal dependence on large-scale flow topology. Phys. Fluids 20, 015101.CrossRefGoogle Scholar
Mills, R. R. & Corrsin, S. 1959 Effect of contraction on turbulence and temperature fluctuations generated by a warm grid. Tech. Rep. 5-5-59W. NASA Memorandum.Google Scholar
Mohamed, M. S. & Larue, J. C. 1990 The decay power law in grid-generated turbulence. J. Fluid Mech. 219, 195214.Google Scholar
Mydlarski, L. & Warhaft, Z. 1996 On the onset of high Reynolds number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331368.Google Scholar
Naudascher, E. & Farell, C. 1970 Unified analysis of grid turbulence. J. Engng Mech. Div., ASCE 96 (No. EM2, Proc. Paper 7214), 121141.CrossRefGoogle Scholar
Özyilmaz, N. 2003 Turbulence statistics in the inner layer of two-dimensional channel flow. Master's thesis, Friedrich Alexander Universität Erlangen-Nürnberg, LSTM-Erlangen, Germany.Google Scholar
Prandtl, L. 1932 Herrstellung Einwand freier luftströme im windkanäle. Handbuch der Experimentalphysik [Translated as NACA-TM-726 (1933)] 4 (2), 73.Google Scholar
Prandtl, L. 1933 Attaining a steady air stream in wind tunnels. Tech. Rep. NACA-TM-726.Google Scholar
Reynolds, A. J. & Tucker, H. J. 1975 The distortion of turbulence by general uniform irrotational strain. J. Fluid Mech. 68, 673693.CrossRefGoogle Scholar
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Shen, X. & Warhaft, Z. 2000 The anisotropy of the small scale structure in high Reynolds number (r λ ≈ 1000) turbulent shear flow. Phys. Fluids 12 (11), 29762989.CrossRefGoogle Scholar
Shen, X. & Warhaft, Z. 2002 Longitudinal and transverse structure functions in sheared and unsheared wind-tunnel turbulence. Phys. Fluids 14 (1), 370381.Google Scholar
Sjögren, T. & Johansson, A. V. 1998 Measurement and modelling of homogeneous axisymmetric turbulence. J. Fluid Mech. 374, 5990.CrossRefGoogle Scholar
Spalart, P. 1988 Direct numerical study of leading edge contamination. In Fluid Dynamics of Three-dimensional Turbulent Shear Flows and Transition, pp. 5.1–5.13.Google Scholar
Succi, S. 2001 The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Oxford University Press.Google Scholar
Tan-Atichat, J. & Nagib, H. M. 1982 Interaction of free-stream turbulence with screens and grids: a balance between turbulence scales. J. Fluid Mech. 114, 501528.Google Scholar
Tan-Atichat, J., Nagib, H. M. & Drubka, R. E. 1980 Effects of axisymmetric contractions on turbulence of various scales. Tech. Rep. 165136. NASA Contractor Report.Google Scholar
Taylor, G. I. 1935 a Statistical theory of turbulence. Parts 1–4. Proc. R. Soc. A 151, 421.Google Scholar
Taylor, G. I. 1935 b Turbulence in a contracting stream. Z. Angew. Math. Mech. 15, 9196.Google Scholar
Taylor, G. I. 1937 The statistical theory of isotropic turbulence. J. Aero. Sci. 4, 311.Google Scholar
Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. A 164, 476.Google Scholar
Townsend, A. A. 1954 The uniform distortion of homogeneous turbulence. Q. J. Mech. Appl. Math. 7, 104127.CrossRefGoogle Scholar
Tucker, H. J. & Reynolds, A. J. 1968 The distortion of turbulence by irrotational strain. J. Fluid Mech. 32, 657673.Google Scholar
Uberoi, M. S. 1956 Effect of wind-tunnel contraction on free-stream turbulence. J. Aero. Sci. 23, 754764.Google Scholar
Uberoi, M. S. 1957 Equipartition of energy and local isotropy in turbulent flows. J. Appl. Phys. 28 (10), 11631170.Google Scholar
Warhaft, Z. 1980 An experimental study of the effect of uniform strain on thermal fluctuations in grid-generated turbulence. J. Fluid Mech. 99, 545573.Google Scholar
Warhaft, Z. & Shen, X. 2002 On the higher order mixed structure functions in laboratory shear flow. Phys. Fluids 14 (7), 24322438.Google Scholar
Wellein, G., Zeiser, T., Hager, G. & Donath, S. 2006 On the single processor performance of simple Lattice Boltzmann kernels. Comput. Fluids 35, 910919.Google Scholar
Wolf-Gladrow, D. 2000 Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction. Springer.CrossRefGoogle Scholar
Zeiser, T., Lammers, P., Klemm, E., Bernsdorf, J. & Brenner, G. 2001 CFD-calculation of flow, dispersion and reaction in a catalyst filled tube by the lattice Boltzmann method. Chem. Engng Sci. 56, 16971704.Google Scholar