Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-19T12:11:55.708Z Has data issue: false hasContentIssue false

High-frequency acoustic noise emission excited by laser-driven cavitation

Published online by Cambridge University Press:  26 April 2006

L. Likhterov
Affiliation:
Department of Mechanical Engineering, Ben-Gurion University of the Negev, POB 653, Beer Sheva, 84105, Israel

Abstract

A high-frequency part of the acoustic noise spectrum excited by laser-driven cavitation in liquid is investigated theoretically. It is assumed that the liquid is inviscid and compressible and the surface tension may be neglected. The specific heat ratio is taken to be 5/3. It is shown that, in the first approximation, the spectral density of the acoustic energy emitted by a cavity explosion varies as the -4/7 power of the frequency and asymptotically decreases by ∼ 3.4 dB/octave.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arecchi, F. T. & Schulz-Dobois, E. O. (eds.) 1972 Laser Handbook Vol. 2. North Holland.
Barber, B. P. & Putterman, S. Y. 1992 Light scattering measurements of the repetitive supersonic implosion of a sonoluminescing bubble. Phys. Rev. Lett. 69 (26), 38393842.Google Scholar
Benjamin, T. B. 1958 Pressure waves from collapsing cavities. Second Symp. on Naval Hydrodynamics (ed. R. D. Cooper), pp. 207233. National Academy of Sciences.
Carome, E. F., Moeller, C. E. & Clark, N. A. 1966 Intense ruby-laser induced acoustic impulses in liquids. J. Acoust. Soc. Am. 40, 14621466.Google Scholar
Chia-Lun Hu 1969 Spherical model of an acoustical wave generated by laser produced cavitation bubbles near a solid boundary. J. Acoust. Soc. Am. 46, 728736.Google Scholar
Church, C. 1991 A comparison between ‘real’ and ‘ideal’ gas in theoretical cavitation dynamics. J. Acoust. Soc. Am. Suppl. 2, 89, 18621866.Google Scholar
Cole, R. H. 1948 Underwater Explosions. Princeton University Press.
Coleman, A. J., Saunders, J. E., Crum, L. A. & Dyson, M. 1987 Acoustic cavitation generated by an extra corporeal shockwave lithotripter. Ultrasound Med. Biol. 13, 6976.Google Scholar
Esipov, I. B. & Naugol'nykh, K. A. 1972 Expansion of a spherical cavity in a liquid. Sov. Phys. Acoust. 18, 194197.Google Scholar
Fabbro, R., Max, C. & Fabre, E. 1985 Planar laser-driven ablation: effect of inhibited electron thermal conduction. Phys. Fluids 28, 14631481.Google Scholar
Farnsworth, A. V. 1980 Power-driven and adiabatic expansions into vacuum. Phys. Fluids 23, 14961500.Google Scholar
Farnsworth, A. V., Widner, M. M., Clauser, M. J. & McDaniel, P. J. 1979 Self-similar power-driven expansion into vacuum. Phys. Fluids 22, 859865.Google Scholar
Felix, M. P. & Ellis, A. T. 1971 Laser-induced liquid breakdown — a step-by-step account. Appl. Phys. Lett. 19 (11), 484486.Google Scholar
Fitzpatrick, H. M. & Strasberg, M. 1958 Hydrodynamic sources of sound. Second Symp. on Naval Hydrodynamics, pp. 241275. National Academy of Sciences.
Frankhauser, F., Roussel, P., Steffen, J., Van der Zypen, E. & Chrenkova, A. 1981 Clinical studies on the efficiency of high power laser radiation upon some structures of the anterior segment of the eye. Intl Ophthalmol. 3, 129139.Google Scholar
Gilmore, F. R. 1952 The growth or collapse of a spherical bubble in a viscous compressible liquid. Proc. Heat Transfer and Fluid Mechanics Inst. Held at the University of California at Los Angeles.
Gradshtein, I. S. & Ryzhik, I. M. 1965 Tables of Integrals, Series and Products. Academic Press.
Hiller, R., Putterman, S. Y. & Barber, B. P. 1992 Spectrum of synchronous picosecond sonoluminescence. Phys. Rev. Lett. 69 (8), 11821184.Google Scholar
Hsieh, D. Y. 1965 Some analytical aspects of bubble dynamics. J. Basic Engng, December 991–1005.Google Scholar
Karabutov, A. A. & Rudenko, O. V. 1976 Excitation of nonlinear acoustic waves by surface absorption of laser radiation. Sov. Phys. Tech. Phys. 20 (7), 920922.Google Scholar
Keller, J. B. & Miksis, M. 1980 Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68, 628633.Google Scholar
Khonkin, A. D. & Orlov, A. V. 1993 Weak shock structure on the basis of modified hydrodynamical equations. Phys. Fluids A 5, 18101813.Google Scholar
Kumar, S. & Brennen, C. E. 1993 A study of pressure pulses generated by travelling bubble cavitation. J. Fluid Mech. 255, 541564.Google Scholar
Löfstedt, R., Barber, B. P. & Putterman, S. Y. 1993 Toward a hydrodynamic theory of sonoluminescence. Phys. Fluids A 5, 29112928.Google Scholar
London, R. A. & Rosen, M. D. 1986 Hydrodynamics of exploding foil X-ray lasers. Phys. Fluids 29, 38133822.Google Scholar
Mellen, R. H. 1954 Ultrasonic spectrum of cavitation noise in water. J. Acoust. Soc. Am. 26, 356360.Google Scholar
Prosperetti, A., Crum, L. A. & Commander, K. W. 1988 Nonlinear bubble dynamics. J. Acoust. Soc. Am. 83, 502514.Google Scholar
Steiner, R. (ed.) 1988 Laser Lithotripsy, Proc. 1st Intl Symp. on Laser Lithotripsy, October 1987, Ulm. Springer.
Trilling, L. J. 1952 The collapse and rebound of a gas bubble. J. Appl. Phys. 23, 1418.Google Scholar
Tzuk, Y., Barmashenko, B. D., Bar, I. S. & Rosenwaks, S. 1993 The sudden expansion of a gas cloud into vacuum revisited. Phys. Fluids A 5, 32653272.Google Scholar
Vogel, A. & Lautterborn, W. 1988 Acoustic transient generation by laser produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 84, 719731.Google Scholar
Vogel, A., Lauterborn, W. & Timm, R. 1989 Optical and acoustic investigation of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299338.Google Scholar
Zel'dovich, Ya. B. & Raizer, Yu. P. 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. I, II. Academic.