Published online by Cambridge University Press: 18 April 2002
A theory is developed for the speed and structure of steady-state non-dissipative gravity currents in rotating channels. The theory is an extension of that of Benjamin (1968) for non-rotating gravity currents, and in a similar way makes use of the steady-state and perfect-fluid (incompressible, inviscid and immiscible) approximations, and supposes the existence of a hydrostatic ‘control point’ in the current some distance away from the nose. The model allows for fully non-hydrostatic and ageostrophic motion in a control volume V ahead of the control point, with the solution being determined by the requirements, consistent with the perfect-fluid approximation, of energy and momentum conservation in V, as expressed by Bernoulli's theorem and a generalized flow-force balance. The governing parameter in the problem, which expresses the strength of the background rotation, is the ratio W = B/R, where B is the channel width and R = (g′H)1/2/f is the internal Rossby radius of deformation based on the total depth of the ambient fluid H. Analytic solutions are determined for the particular case of zero front-relative flow within the gravity current. For each value of W there is a unique non-dissipative two-layer solution, and a non-dissipative one-layer solution which is specified by the value of the wall-depth h0. In the two-layer case, the non-dimensional propagation speed c = cf(g′H)−1/2 increases smoothly from the non-rotating value of 0.5 as W increases, asymptoting to unity for W → ∞. The gravity current separates from the left-hand wall of the channel at W = 0.67 and thereafter has decreasing width. The depth of the current at the right-hand wall, h0, increases, reaching the full depth at W = 1.90, after which point the interface outcrops on both the upper and lower boundaries, with the distance over which the interface slopes being 0.881R. In the one-layer case, the wall-depth based propagation speed Froude number c0 = cf(g′h0)−1/2 = 21/2, as in the non-rotating one-layer case. The current separates from the left-hand wall of the channel at W0 ≡ B/R0 = 2−1/2, and thereafter has width 2−1/2R0, where R0 = (g′h0)1/2/f is the wall-depth based deformation radius.