Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T18:45:21.988Z Has data issue: false hasContentIssue false

Global stability of axisymmetric flow focusing

Published online by Cambridge University Press:  26 October 2017

F. Cruz-Mazo
Affiliation:
Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, E-41092 Sevilla, Spain
M. A. Herrada
Affiliation:
Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, E-41092 Sevilla, Spain
A. M. Gañán-Calvo
Affiliation:
Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, E-41092 Sevilla, Spain
J. M. Montanero*
Affiliation:
Departamento de Ingeniería Mecánica, Energética y de los Materiales and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06071 Badajoz, Spain
*
Email address for correspondence: [email protected]

Abstract

In this paper, we analyse numerically the stability of the steady jetting regime of gaseous flow focusing. The base flows are calculated by solving the full Navier–Stokes equations and boundary conditions for a wide range of liquid viscosities and gas speeds. The axisymmetric modes characterizing the asymptotic stability of those flows are obtained from the linearized Navier–Stokes equations and boundary conditions. We determine the flow rates leading to marginally stable states, and compare them with the experimental values at the jetting-to-dripping transition. The theoretical predictions satisfactorily agree with the experimental results for large gas speeds. However, they do not capture the trend of the jetting-to-dripping transition curve for small gas velocities, and considerably underestimate the minimum flow rate in this case. To explain this discrepancy, the Navier–Stokes equations are integrated over time after introducing a small perturbation in the tapering liquid meniscus. There is a transient growth of the perturbation before the asymptotic exponential regime is reached, which leads to dripping. Our work shows that flow focusing stability can be explained in terms of the combination of asymptotic global stability and the system short-term response for large and small gas velocities, respectively.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acero, A. J., Ferrera, C., Montanero, J. M. & Gañán-Calvo, A. M. 2012 Focusing liquid microjets with nozzles. J. Micromech. Microengng 22, 065011.CrossRefGoogle Scholar
Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., Hunter, M. S., Schulz, J., DePonte, D. P., Weierstall, U. et al. 2011 Femtosecond x-ray protein nanocrystallography. Nature 470, 7379.Google Scholar
Chomaz, J. 2005 Global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 37, 357392.Google Scholar
DePonte, D. P., Weierstall, U., Schmidt, K., Warner, J., Starodub, D., Spence, J. C. H. & Doak, R. B. 2008 Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D: Appl. Phys. 41, 195505.CrossRefGoogle Scholar
Dizes, S. L. 1997 Global modes in falling capillary jets. Eur. J. Mech. (B/Fluids) 16, 761778.Google Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.Google Scholar
Forbes, T. P. & Sisco, E. 2014 Chemical imaging of artificial fingerprints by desorption electro-flow focusing ionization mass spectrometry. Analyst 139, 2982.Google Scholar
Gañán-Calvo, A. M. 1998 Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 80, 285288.Google Scholar
Gañán-Calvo, A. M., Montanero, J. M., Martín-Banderas, L. & Flores-Mosquera, M. 2013 Building functional materials for health care and pharmacy from microfluidic principles and Flow Focusing. Adv. Drug Deliv. Rev. 65, 14471469.CrossRefGoogle ScholarPubMed
García, F. & González, H. 2008 Normal-mode linear analysis and initial conditions of capillary jets. J. Fluid Mech. 602, 81117.Google Scholar
González, H. & García, F. 2009 The measurement of growth rates in capillary jets. J. Fluid Mech. 619, 179212.Google Scholar
Gordillo, J. M., Sevilla, A. & Campo-Cortés, F. 2014 Global stability of stretched jets: conditions for the generation of monodisperse micro-emulsions using coflows. J. Fluid Mech. 738, 335357.Google Scholar
Herrada, M. A., Gañán-Calvo, A. M., Ojeda-Monge, A., Bluth, B. & Riesco-Chueca, P. 2008 Liquid flow focused by a gas: Jetting, dripping, and recirculation. Phys. Rev. E 78, 036323.Google Scholar
Herrada, M. A. & Montanero, J. M. 2016 A numerical method to study the dynamics of capillary fluid systems. J. Comput. Phys. 306, 137147.Google Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilites in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.Google Scholar
Korczyk, P. M., Cybulski, O., Makulskaa, S. & Garstecki, P. 2011 Effects of unsteadiness of the rates of flow on the dynamics of formation of droplets in microfluidic systems. Lab on a Chip 11, 173175.Google Scholar
Lakkis, J. M. 2016 Encapsulation and Controlled Release Technologies in Food Systems. Wiley.Google Scholar
Leib, S. J. & Goldstein, M. E. 1986 Convective and absolute instability of a viscous liquid jet. Phys. Fluids 29, 952954.Google Scholar
de Luca, L. 1999 Experimental investigation of the global instability of plane sheet flows. J. Fluid Mech. 399, 355376.Google Scholar
de Luca, L., Costa, M. & Caramiello, C. 2002 Energy growth of initial perturbations in two-dimensional gravitational jets. Phys. Fluids 14, 289299.Google Scholar
Montanero, J. M., Rebollo-Muñoz, N., Herrada, M. A. & Gañán-Calvo, A. M. 2011 Global stability of the focusing effect of fluid jet flows. Phys. Rev. E 83, 036309.Google Scholar
Rayleigh, J. W. S. 1892 On the instability of a cylinder of viscous liquid under capillary force. Phil. Mag. 35, 145155.CrossRefGoogle Scholar
Rubio-Rubio, M., Sevilla, A. & Gordillo, J. M. 2013 On the thinnest steady threads obtained by gravitational stretching of capillary jets. J. Fluid Mech. 729, 471483.Google Scholar
Sauter, U. S. & Buggisch, H. W. 2005 Stability of initially slow viscous jets driven by gravity. J. Fluid Mech. 533, 237257.Google Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Si, T., Feng, H., Luo, X. & Xu, R. X. 2014 Formation of steady compound cone-jet modes and multilayered droplets in a tri-axial capillary flow focusing device. Microfluid Nanofluid 1, 111.Google Scholar
Si, T., Li, F., Yin, X.-Y. & Yin, X.-Z. 2009 Modes in flow focusing and instability of coaxial liquid–gas jets. J. Fluid Mech. 629, 123.Google Scholar
Tammisola, O., Lundell, F. & Soderberg, L. D. 2012 Surface tension-induced global instability of planar jets and wakes. J. Fluid Mech. 713, 632658.CrossRefGoogle Scholar
Tammisola, O., Sasaki, A., Lundell, F., Matsubara, M. & Soderberg, L. D. 2011 Stabilizing effect of surrounding gas flow on a plane liquid sheet. J. Fluid Mech. 672, 532.CrossRefGoogle Scholar
Theofilis, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319352.Google Scholar
Trebbin, M., Kruger, K., DePonte, D., Roth, S. V., Chapman, H. N. & Forster, S. 2014 Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions. Lab on a Chip 14, 17331745.CrossRefGoogle ScholarPubMed
Vega, E. J., Montanero, J. M., Herrada, M. A. & Gañán-Calvo, A. M. 2010 Global and local instability of flow focusing: the influence of the geometry. Phys. Fluids 22, 064105.Google Scholar
Yakubenko, P. A. 1997 Global capillary instability of an inclined jet. J. Fluid Mech. 346, 181200.CrossRefGoogle Scholar
Zhuab, P. & Wang, L. 2017 Passive and active droplet generation with microfluidics: a review. Lab on a Chip 17, 3475.Google Scholar