Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T13:46:31.379Z Has data issue: false hasContentIssue false

Foam mechanics: spontaneous rupture of thinning liquid films with Plateau borders

Published online by Cambridge University Press:  10 June 2010

ANTHONY M. ANDERSON*
Affiliation:
Department of Engineering Sciences and Applied Mathematics, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208, USA
LUCIEN N. BRUSH
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
STEPHEN H. DAVIS
Affiliation:
Department of Engineering Sciences and Applied Mathematics, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL 60208, USA
*
Email address for correspondence: [email protected]

Abstract

Spontaneous film rupture from van der Waals instability is investigated in two dimensions. The focus is on pure liquids with clean interfaces. This case is applicable to metallic foams for which surfactants are not available. There are important implications in aqueous foams as well, but the main differences are noted. A thin liquid film between adjacent bubbles in a foam has finite length, curved boundaries (Plateau borders) and a drainage flow from capillary suction that causes it to thin. A full linear stability analysis of this thinning film shows that rupture occurs once the film has thinned to ‘tens’ of nanometres, whereas for a quiescent film with a constant and uniform thickness, rupture occurs when the thickness is ‘hundreds’ of nanometres. Plateau borders and flow are both found to contribute to the stabilization. The drainage flow leads to several distinct qualitative features as well. In particular, unstable disturbances are advected by the flow to the edges of the thin film. As a result, the edges of the film close to the Plateau borders appear more susceptible to rupture than the centre of the film.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amestoy, P. R., Duff, I. S., L'Excellent, J.-Y. & Koster, J. 2000 Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Engng 184, 501520.CrossRefGoogle Scholar
Aradian, A., Raphael, E. & de Gennes, P. G. 2001 ‘Marginal pinching’ in soap films. Europhys. Lett. 55, 834840.CrossRefGoogle Scholar
Aris, R. 1989 Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Dover.Google Scholar
Banhart, J. 2001 Manufacture, characterisation, and application of cellular metals and metal foams. Prog. Mater. Sci. 46 (6), 559632.CrossRefGoogle Scholar
Banhart, J., Stanzick, H., Helfen, L. & Baumbach, T. 2001 Metal foam evolution studied by synchrotron radioscopy. Appl. Phys. Lett. 78 (8), 11521154.CrossRefGoogle Scholar
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.CrossRefGoogle Scholar
Breward, C. J. W. & Howell, P. D. 2002 The drainage of a foam lamella. J. Fluid Mech. 458, 379406.CrossRefGoogle Scholar
Brush, L. N. & Davis, S. H. 2005 A new law of thinning in foam dynamics. J. Fluid Mech. 534, 227236.CrossRefGoogle Scholar
Burelbach, J. P., Bankoff, S. G. & Davis, S. H. 1988 Nonlinear stability of evaporating condensing liquid films. J. Fluid Mech. 195, 463494.CrossRefGoogle Scholar
Coons, J. E., Halley, P. J., McGlashan, S. A. & Tran-Cong, T. 2003 A review of drainage and spontaneous rupture in free standing thin films with tangentially immobile interfaces. Adv. Colloid Interface Sci. 105, 362.CrossRefGoogle ScholarPubMed
Davis, S. H. 1976 Stability of time-periodic flows. Annu. Rev. Fluid Mech. 8, 5774.CrossRefGoogle Scholar
Derjaguin, B. 1955 Definition of the concept and determination of the disjoining pressure. Colloid J. USSR 17, 191197.Google Scholar
Derjaguin, B. & Landau, L. 1941 Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chem. USSR 14, 633662.Google Scholar
Diez, J. A. & Kondic, L. 2007 On the breakup of fluid films of finite and infinite extent. Phys. Fluids 19, 072107.CrossRefGoogle Scholar
Dzyaloshinskii, I. E., Lifshitz, E. M. & Pitaevskii, L. P. 1960 van der Waals forces in liquid films. Sov. Phys. JETP 37, 161170.Google Scholar
Dzyaloshinskii, I. E. & Pitaevskii, L. P. 1959 van der Waals forces in an inhomogenous dielectric. Sov. Phys. JETP 36, 12821287.Google Scholar
Erneux, T. & Davis, S. H. 1993 Nonlinear rupture of free films. Phys. Fluids 5, 11171122.CrossRefGoogle Scholar
Frankel, S. P. & Mysels, K. J. 1962 On dimpling during approach of two interfaces. J. Phys. Chem. 66, 190191.CrossRefGoogle Scholar
Gumerman, R. J. & Homsy, G. M. 1975 The stability of radially bounded thin films. Chem. Engng Commun. 2, 2736.CrossRefGoogle Scholar
Howell, P. D. & Stone, H. A. 2005 On the absence of marginal pinching in thin free films. Eur. J. Appl. Math. 16, 569582.CrossRefGoogle Scholar
Ida, M. P. & Miksis, M. J. 1996 Thin film rupture. Appl. Math. Lett. 9, 3540.CrossRefGoogle Scholar
Ivanov, I. B., Radoev, B., Manev, E. & Sheludko, A. 1970 Theory of critical thickness of rupture of thin liquid films. Trans. Faraday Soc. 66, 12621273.CrossRefGoogle Scholar
Jones, A. F. & Wilson, S. D. R. 1978 Film drainage problem in droplet coalescence. J. Fluid Mech. 87, 263288.CrossRefGoogle Scholar
Joye, J. L., Miller, C. A. & Hirasaki, G. J. 1992 Dimple formation and behavior during axisymmetric foam film drainage. Langmuir 8, 30833092.CrossRefGoogle Scholar
Lebedev, N. N. 1972 Special Functions and Their Applications. Dover.Google Scholar
Lehoucq, R. B., Sorensen, D. C. & Yang, C. 1998 ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM.Google Scholar
Lifshitz, E. M. 1956 The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 7383.Google Scholar
Lucassen, J., van den Tempel, M., Vrij, A. & Hesselink, F. T. 1970 Waves in thin liquid films: 1. Different modes of vibration. Proc. K. Ned. Akad. Wet. B 73, 109.Google Scholar
Manev, E. & Nguyen, A. 2005 Critical thickness of microscopic thin liquid films. Adv. Colloid Interface Sci. 114, 133146.CrossRefGoogle ScholarPubMed
Overbeek, J. T. G. 1960 Black soap films. J. Phys. Chem. 64, 1178.CrossRefGoogle Scholar
Parsegian, V. A. 2006 Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists. Cambridge University Press.Google Scholar
Plateau, J. A. F. 1873 Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires. Gauthier-Villars.Google Scholar
Ruckenstein, E. & Jain, R. K. 1974 Spontaneous rupture of thin liquid films. J. Chem. Soc. Faraday Trans. II 70, 132147.CrossRefGoogle Scholar
Sharma, A. & Ruckenstein, E. 1987 Stability, critical thickness, and the time of rupture of thinning foam and emulsion films. Langmuir 3, 760768.CrossRefGoogle Scholar
Sheludko, A. 1962 Sur certaines particularités des lames mousseuses. Proc. K. Ned. Akad. Wet. B 65, 87.Google Scholar
Sheludko, A. 1967 Thin liquid films. Adv. Colloid Interface Sci. 1, 391464.CrossRefGoogle Scholar
Shen, S. F. 1961 Some considerations on the laminar stability of time-dependent basic flows. J. Aerosp. Sci. 28, 397404, 417.CrossRefGoogle Scholar
Thompson, J. F., Warsi, Z. U. A. & Mastin, C. W. 1985 Numerical Grid Generation: Foundations and Applications. Elsevier.Google Scholar
Vaynblat, D., Lister, J. R. & Witelski, T. P. 2001 Rupture of thin viscous films by van der Waals forces: evolution and self-similarity. Phys. Fluids 13, 11301140.CrossRefGoogle Scholar
Verwey, E. J. W. & Overbeek, J. T. G. 1948 Theory of the Stability of Lyophobic Colloids. Elsevier.Google Scholar
Vrij, A. 1966 Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 42, 2333.CrossRefGoogle Scholar
Vrij, A., Hesselink, F. T., Lucassen, J. & van den Tempel, M. 1970 Waves in thin liquid films: 2. Symmetrical modes in very thin films and film rupture. Proc. K. Ned. Akad. Wet. B 73, 124.Google Scholar
Vrij, A. & Overbeek, J. T. G. 1968 Rupture of thin liquid films due to spontaneous fluctuations in thickness. J. Am. Chem. Soc. 90, 30743078.CrossRefGoogle Scholar
Williams, M. B. & Davis, S. H. 1982 Nonlinear theory of film rupture. J. Colloid Interface Sci. 90, 220228.CrossRefGoogle Scholar