Published online by Cambridge University Press: 26 April 2006
Thermohaline convection in a salt water loop is discussed. Fluid temperature is affected by relaxation on the loop surface and fluid salinity by a freshwater flux through the loop surface. In addition, other boundary conditions on salinity, such as the equivalent virtual salt flux or salinity relaxation condition, are examined and the dynamic role of diffusion in thermohaline convection is analysed.
Both analytical and numerical analyses indicate that the system behaviour depends sensitively on the nature of the salinity boundary condition. For the saline-only loop model, analysis indicates that perturbations are advected by the mean flow, and flow stability is independent of the strength of the boundary forcing. In the full thermohaline loop problem, the virtual salt flux formulation accurately mirrors the freshwater flux results when the system is in the thermal mode. However, these formulations can differ substantially when the system is in the haline mode, especially in the strongly forced, weakly diffusive limit.
For both types of loop configuration, salinity profiles governed by freshwater flux have scales determined by the internal parameters, while virtual salt flux profiles necessarily reflect the lengthscales of applied boundary conditions. Negative salinities can also appear under virtual salt flux owing to the inaccuracies inherent in the approximation, while freshwater flux ensures positive-definite salinity values.
Our analysis supports the use of the physically more accurate freshwater flux boundary conditions when simulating thermohaline circulation.