Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T05:28:04.243Z Has data issue: false hasContentIssue false

Fluid deformation in random steady three-dimensional flow

Published online by Cambridge University Press:  19 September 2018

Daniel R. Lester*
Affiliation:
School of Engineering, RMIT University, 3000 Melbourne, Australia
Marco Dentz
Affiliation:
Spanish National Research Council (IDAEA-CSIC), 08034 Barcelona, Spain
Tanguy Le Borgne
Affiliation:
Geosciences Rennes, UMR 6118, Université de Rennes 1, CNRS, 35042 Rennes, France
Felipe P. J. de Barros
Affiliation:
Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
*
Email address for correspondence: [email protected]

Abstract

The deformation of elementary fluid volumes by velocity gradients is a key process for scalar mixing, chemical reactions and biological processes in flows. Whilst fluid deformation in unsteady, turbulent flow has gained much attention over the past half-century, deformation in steady random flows with complex structure – such as flow through heterogeneous porous media – has received significantly less attention. In contrast to turbulent flow, the steady nature of these flows constrains fluid deformation to be anisotropic with respect to the fluid velocity, with significant implications for e.g. longitudinal and transverse mixing and dispersion. In this study we derive an ab initio coupled continuous-time random walk (CTRW) model of fluid deformation in random steady three-dimensional flow that is based upon a streamline coordinate transform which renders the velocity gradient and fluid deformation tensors upper triangular. We apply this coupled CTRW model to several model flows and find that these exhibit a remarkably simple deformation structure in the streamline coordinate frame, facilitating solution of the stochastic deformation tensor components. These results show that the evolution of longitudinal and transverse fluid deformation for chaotic flows is governed by both the Lyapunov exponent and power-law exponent of the velocity probability distribution function at small velocities, whereas algebraic deformation in non-chaotic flows arises from the intermittency of shear events following similar dynamics as that for steady two-dimensional flow.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, K. 1983 Calculation of strain histories in Protean coordinate systems. Rheol. Acta 22 (4), 326335.Google Scholar
Adachi, K. 1986 A note on the calculation of strain histories in orthogonal streamline coordinate systems. Rheol. Acta 25 (6), 555563.Google Scholar
Arnol’d, V. I. 1965 Sur la topologie des écoulements stationnaires des fluides parfaits. C. R. Acad. Sci. Paris 261, 312314.Google Scholar
Arnol’d, V. I. 1966 On the topology of three-dimensional steady flows of an ideal fluid. J. Appl. Math. Mech. 30, 223226.Google Scholar
Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30 (8), 23432353.Google Scholar
Attinger, S., Dentz, M. & Kinzelbach, W. 2004 Exact transverse macro dispersion coefficients for transport in heterogeneous porous media. Stoch. Environ. Res. Risk Assess. 18 (1), 915.Google Scholar
de Barros, F. P. J., Dentz, M., Koch, J. & Nowak, W. 2012 Flow topology and scalar mixing in spatially heterogeneous flow fields. Geophys. Res. Lett. 39 (8), l08404.Google Scholar
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Berkowitz, B., Cortis, A., Dentz, M. & Scher, H. 2006 Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, 2005RG000178.Google Scholar
Bijeljic, B., Mostaghimi, P. & Blunt, M. J. 2011 Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107, 204502.Google Scholar
de Carvalho, T. P., Morvan, H. P., Hargreaves, D. M., Oun, H. & Kennedy, A. 2017 Pore-scale numerical investigation of pressure drop behaviour across open-cell metal foams. Trans. Porous Med. 117 (2), 311336.Google Scholar
Cirpka, O. A., de Barros, F. P. J., Chiogna, G., Rolle, M. & Nowak, W. 2011 Stochastic flux-related analysis of transverse mixing in two-dimensional heterogeneous porous media. Water Resour. Res. 47 (6), W06515.Google Scholar
Cocke, W. J. 1969 Turbulent hydrodynamic line stretching: consequences of isotropy. Phys. Fluids 12 (12), 24882492.Google Scholar
Cushman, J. H. 2013 Theory and Applications of Transport in Porous Media, vol. 1. Springer.Google Scholar
De Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A. M., Bolster, D. & Davy, P. 2013 Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110 (18), 184502.Google Scholar
Dean, D. S., Drummond, I. T. & Horgan, R. R. 2001 Effect of helicity on the effective diffusivity for incompressible random flows. Phys. Rev. E 63, 061205.Google Scholar
Dentz, M., de Barros, F. P. J., Le Borgne, T. & Lester, D. R. 2018 Evolution of solute blobs in heterogeneous porous media. J. Fluid Mech. 853, 621646.Google Scholar
Dentz, M., Kang, P. K., Comolli, A., Le Borgne, T. & Lester, D. R. 2016a Continuous time random walks for the evolution of Lagrangian velocities. Phys. Rev. Fluids 1, 074004.Google Scholar
Dentz, M., Le Borgne, T., Lester, D. R. & de Barros, F. P. J. 2015 Scaling forms of particle densities for Lévy walks and strong anomalous diffusion. Phys. Rev. E 92 (3), 032128.Google Scholar
Dentz, M., Lester, D. R., Borgne, T. L. & de Barros, F. P. J. 2016b Coupled continuous-time random walks for fluid stretching in two-dimensional heterogeneous media. Phys. Rev. E 94 (6), 061102.Google Scholar
Dieci, L., Russell, R. D. & Van Vleck, E. S. 1997 On the compuation of Lyapunov exponents for continuous dynamical systems. SIAM J. Numer. Anal. 34 (1), 402423.Google Scholar
Dieci, L. & Van Vleck, E. S. 2008 On the error in QR integration. SIAM J. Numer. Anal. 46 (3), 11661189.Google Scholar
Duplat, J., Innocenti, C. & Villermaux, E. 2010 A nonsequential turbulent mixing process. Phys. Fluids 22 (3), 035104.Google Scholar
Edery, Y., Guadagnini, A., Scher, H. & Berkowitz, B. 2014 Origins of anomalous transport in heterogeneous media: structural and dynamic controls. Water Resour. Res. 50 (2), 14901505.Google Scholar
Finnigan, J. J. 1990 Streamline coordinates, moving frames, chaos and integrability in fluid flow. In Proc. IUTAM Symp. Topological Fluid Mechanics (ed. Moffat, H. K. & Tsinober, A.), vol. 1, pp. 6474. Cambridge University Press.Google Scholar
Finnigan, J. J. 1983 A streamline coordinate system for distorted two-dimensional shear flows. J. Fluid Mech. 130, 241258.Google Scholar
Fiori, A., Jankovic, I., Dagan, G. & Cvetkovic, V. 2007 Ergodic transport through aquifers of non-Gaussian log conductivity distribution and occurence of anomalous behavior. Water Resour. Res. 43, W09407.Google Scholar
Girimaji, S. S. & Pope, S. B. 1990 Material-element deformation in isotropic turbulence. J. Fluid Mech. 220, 427458.Google Scholar
Holm, D. D. & Kimura, Y. 1991 Zero-helicity Lagrangian kinematics of three-dimensional advection. Phys. Fluids A 3 (5), 10331038.Google Scholar
Holzner, M., Morales, V. L., Willmann, M. & Dentz, M. 2015 Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow. Phys. Rev. E 92, 013015.Google Scholar
Kang, P. K., Dentz, M., Le Borgne, T. & Juanes, R. 2015 Anomalous transport on regular fracture networks: impact of conductivity heterogeneity and mixing at fracture intersections. Phys. Rev. E 92, 022148.Google Scholar
Kelvin, Lord 1884 Reprint of Papers on Electrostatics and Magnetism. Macmillan & Company.Google Scholar
Kenkre, V. M., Montroll, E. W. & Shlesinger, M. F. 1973 Generalized master equations for continuous-time random walks. J. Stat. Phys. 9 (1), 4550.Google Scholar
Kraichnan, R. H. 1970 Diffusion by a random velocity field. Phys. Fluids 13 (1), 2231.Google Scholar
Le Borgne, T., Dentz, M. & Carrera, J. 2008a Lagrangian statistical model for transport in highly heterogeneous velocity fields. Phys. Rev. Lett. 101, 090601.Google Scholar
Le Borgne, T., Dentz, M. & Carrera, J. 2008b Spatial Markov processes for modeling Lagrangian particle dynamics in heterogeneous porous media. Phys. Rev. E 78, 026308.Google Scholar
Le Borgne, T., Dentz, M. & Villermaux, E. 2013 Stretching, coalescence, and mixing in porous media. Phys. Rev. Lett. 110, 204501.Google Scholar
Le Borgne, T., Dentz, M. & Villermaux, E. 2015 The lamellar description of mixing in porous media. J. Fluid Mech. 770, 458498.Google Scholar
Lester, D. R., Dentz, M. & Le Borgne, T. 2016 Chaotic mixing in three-dimensional porous media. J. Fluid Mech. 803, 144174.Google Scholar
Meneveau, C. 2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43 (1), 219245.Google Scholar
Moffatt, H. K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35 (1), 117129.Google Scholar
Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press.Google Scholar
Scher, H. & Lax, M. 1973 Stochastic transport in a disordered solid. Part I. Theory. Phys. Rev. B 7 (1), 44914502.Google Scholar
Sposito, G. 2001 Topological groundwater hydrodynamics. Adv. Water Resour. 24 (7), 793801.Google Scholar
Tabor, M. 1992 Stretching and Alignment in General Flow Fields: Classical Trajectories from Reynolds Number Zero to Infinity, pp. 83110. Springer.Google Scholar
Thalabard, S., Krstulovic, G. & Bec, J. 2014 Turbulent pair dispersion as a continuous-time random walk. J. Fluid Mech. 755, R4.Google Scholar
Truesdell, C. & Noll, W. 1992 The Non-linear Field Theories of Mechanics, vol. 2. Springer.Google Scholar
Tyukhova, A., Dentz, M., Kinzelbach, W. & Willmann, M. 2016 Mechanisms of anomalous dispersion in flow through heterogeneous porous media. Phys. Rev. Fluids 1, 074002.Google Scholar
Ye, Y., Chiogna, G., Cirpka, O. A., Grathwohl, P. & Rolle, M. 2015 Experimental evidence of helical flow in porous media. Phys. Rev. Lett. 115, 194502.Google Scholar
Zaburdaev, V., Denisov, S. & Klafter, J. 2015 Lévy walks. Rev. Mod. Phys. 87, 483530.Google Scholar