Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T11:25:40.116Z Has data issue: false hasContentIssue false

Flow regimes for the immiscible liquid–liquid displacement in capillary tubes with complete wetting of the displaced liquid

Published online by Cambridge University Press:  10 December 2009

EDSON J. SOARES
Affiliation:
LFTC, Department of Mechanical Engineering, Universidade Federal do Espirito Santo, Avenida Fernando Ferrari, 514, Goiabeiras, 29075-910 ES, Brazil
RONEY L. THOMPSON*
Affiliation:
LFTC-LMTA, Department of Mechanical Engineering (PGMEC), Universidade Federal Fluminense, Rua Passo da Patria 156, 24210-240 Niteroi, RJ, Brazil
*
Email address for correspondence: [email protected]

Abstract

The motion of two immiscible liquids in a capillary tube is analysed, theoretically and numerically, for the case in which a residual film confines the displacing liquid to the core of this tube. The theoretical analysis has shown that the three flow regimes predicted by Taylor (J. Fluid Mech., vol. 10, 1961, pp. 161–165), for the case of gas-displacement, can only be achieved when the ratio of the viscosity of the displaced fluid to that of the displacing one is greater than 2. An elliptic mesh generation technique, coupled with the Galerkin finite-element method, is used to compute the velocity field and the configuration of the interface between the two fluids. A map of cases in the Cartesian space defined by the capillary number (Ca) and the viscosity ratio (Nμ) is constructed in order to locate the different flow patterns the problem exhibits. The critical capillary number at which the flow enters the transition range between the bypass regime and the full-recirculating one is given. While a decrease of the fraction of mass attached to the wall is achieved by decreasing Ca or increasing Nμ, bypass flow patterns are formed as a consequence of high values of the capillary number and viscosity ratio.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allouche, M., Frigaard, I. A. & Sona, G. 2000 Static wall layers in the displacement in two visco-plastic fluids in a plane channel. J. Fluid Mech. 424, 243277.CrossRefGoogle Scholar
Bretherton, F. P. 1961 The motion of long bubble in tubes. J. Fluid Mech. 10, 166188.CrossRefGoogle Scholar
Christodoulou, K. N. & Scriven, L. E. 1992 Discretization of free surface flows and other moving boundary. J. Comput. Phys. 99, 3955.CrossRefGoogle Scholar
Cox, B. G. 1962 On driving a viscous fluid out of a tube. J. Fluid Mech. 20, 8196.CrossRefGoogle Scholar
Dimakopoulos, Y. & Tsamopoulos, J. 2003 a A quasi-elliptic transformation for moving boundary problems with large anisotropic deformations. J. Comput. Phys. 192, 494522.CrossRefGoogle Scholar
Dimakopoulos, Y. & Tsamopoulos, J. 2003 b Transient displacement of a viscoplastic material by air in straight and constricted tubes. J. Non-Newton. Fluid Mech. 112, 4375.CrossRefGoogle Scholar
Dimakopoulos, Y. & Tsamopoulos, J. 2004 On the gas-penetration in straight tubes completely filled with a viscoelastic fluid. J. Non-Newton. Fluid Mech. 117, 117139.CrossRefGoogle Scholar
Dimakopoulos, Y. & Tsamopoulos, J. 2007 Transient displacement of newtonian and viscoplastic liquids by air in complex tubes. J. Non-Newton. Fluid Mech. 142, 162182.CrossRefGoogle Scholar
Fairbrother, F. & Stubbs, A. E. 1935 Studies in electro-endosmosis. Part VI. The ‘bubble-tube’ method of measurement. J. Chem. Soc. 1, 527539.CrossRefGoogle Scholar
Goldsmith, H. L. & Mason, S. G. 1963 The flow of suspensions through tubes. J. Colloid Sci. 18, 237261.CrossRefGoogle Scholar
Hodges, S. R., Jenseng, O. E. & Rallison, J. M. 2004 The motion of a viscous drop through a cylindrical tube. J. Fluid Mech. 501, 279301.CrossRefGoogle Scholar
Huen, C. K., Frigaard, I. A. & Martinez, D. M. 2007 Experimental studies of multi-layer flows using a visco-plastic lubricant. J. Non-Newton. Fluid Mech. 142, 150161.CrossRefGoogle Scholar
Huzyak, M. & Koelling, I. A. 1997 The penetration of a long bubble through a viscoelastic fluid in a tube. J. Non-Newton. Fluid Mech. 71, 7388.CrossRefGoogle Scholar
Lac, E. & Sherwood, J. D. 2009 Motion of a drop along the centreline of a capillary in a pressure-driven flow. J. Fluid Mech. 640, 2754.CrossRefGoogle Scholar
Lee, G., Shaqfeh, E. S. G. & Khomami, B. 2002 A study of viscoelastic free surface by finite element method Hele–Shaw and slot coating flows. J. Non-Newton. Fluid Mech. 117, 117139.Google Scholar
Martinez, M. J. & Udell, K. S. 1990 Axisymmetric creeping motion of drops through circular tubes. J. Fluid Mech. 210, 565591.CrossRefGoogle Scholar
Poslinski, A. J., Oehler, P. O. & Stokes, V. K. 1995 Isothermal gas-assisted displacement of a viscoplastic liquid in tubes. Polym. Engng Sci. 35, 877892.CrossRefGoogle Scholar
Sackinger, P. A., Shunk, P. R. & Rao, R. R. 1996 A Newton–Rhaphson pseudo-solid domain mapping technique for free and moving boundary problems: a finite element implementation. J. Comput. Phys. 125, 83103.CrossRefGoogle Scholar
Soares, E. J., Carvalho, M. S. & de Souza Mendes, P. R. 2005 Immiscible liquid–liquid displacement in capillary tubes. J. Fluids Engng 127, 2431.CrossRefGoogle Scholar
Soares, E. J., Carvalho, M. S. & de Souza Mendes, P. R. 2006 Gas-displacement of non-newtonian liquids in capillary tubes. Intl J. Heat Fluid Flow 27, 95104.CrossRefGoogle Scholar
Soares, E. J., Carvalho, M. S. & de Souza Mendes, P. R. 2008 Immiscible liquid–liquid displacement in capillary tubes: viscoelastic effects. J. Braz. Soc. Mech. Sci. Engng 27, 160165.CrossRefGoogle Scholar
Sousa, D. A., Soares, E. J., Queiroz, R. S. & Thompson, R. L. 2007 Numerical investigation on gas-displacement of a shear-thinning liquid and a visco-plastic material in capillary tubes. J. Non-Newton. Fluid Mech. 144, 149159.CrossRefGoogle Scholar
Sousa, R. G., Pinto, A. M. F. R. & Campos, J. B. L. M. 2006 Effect of gas expansion on the velocity of a taylor bubble: PIV measurements. Intl J. Multiphase flow 32, 11821190.CrossRefGoogle Scholar
de Souza Mendes, P. R., Dutra, E. S. S., Siffert, J. R. R. & Naccache, M. F. 2007 Gas displacement of viscoplastic liquids in capillary tubes. J. Non-Newton. Fluid Mech. 145, 3040.CrossRefGoogle Scholar
Taylor, G. I. 1961 Deposition of a viscous fluid on the wall of a tube. J. Fluid Mech. 10, 161165.CrossRefGoogle Scholar
Westborg, H. & Hassager, O. 1989 Creeping motion of long bubbles and drops in capillary tubes. J. Colloid Interface Sci. 133, 135147.CrossRefGoogle Scholar