Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T10:49:54.390Z Has data issue: false hasContentIssue false

Flame front/turbulence interaction for syngas fuels in the thin reaction zones regime: turbulent and stretched laminar flame speeds at elevated pressures and temperatures

Published online by Cambridge University Press:  29 April 2013

S. Daniele*
Affiliation:
Paul Scherrer Institute (PSI), Combustion Research Laboratory, CH-5232 Villigen PSI, Switzerland
J. Mantzaras
Affiliation:
Paul Scherrer Institute (PSI), Combustion Research Laboratory, CH-5232 Villigen PSI, Switzerland
P. Jansohn
Affiliation:
Paul Scherrer Institute (PSI), Combustion Research Laboratory, CH-5232 Villigen PSI, Switzerland
A. Denisov
Affiliation:
Paul Scherrer Institute (PSI), Combustion Research Laboratory, CH-5232 Villigen PSI, Switzerland
K. Boulouchos
Affiliation:
Swiss Federal Institute of Technology (ETH) Aerothermochemistry and Combustion Systems Laboratory, Sonneggstrasse 3, CH-8092 Zürich, Switzerland
*
Email address for correspondence: [email protected]

Abstract

Experiments were performed in dump-stabilized axisymmetric flames to assess turbulent flame speeds (${S}_{T} $) and mean flamelets speeds (stretched laminar flame speeds, ${S}_{L, k} $). Fuels with significantly different thermodiffusive properties have been investigated, ranging from pure methane to syngas (${\mathrm{H} }_{2} \text{{\ndash}} \mathrm{CO} $ blends) and pure hydrogen, while the pressure was varied from 0.1 to 1.25 MPa. Flame front corrugation was measured with planar laser-induced fluorescence (PLIF) of the OH radical, while turbulence quantities were determined with particle image velocimetry (PIV). Two different analyses based on mass balance were performed on the acquired flame images. The first method assessed absolute values of turbulent flame speeds and the second method, by means of an improved fractal methodology, provided normalized turbulent flame speeds (${S}_{T} / {S}_{L, k} $). Deduced average Markstein numbers exhibited a strong dependence on pressure and hydrogen content of the reactive mixture. It was shown that preferential-diffusive-thermal (PDT) effects acted primarily on enhancing the stretched laminar flame speeds rather than on increasing the flame front corrugations. Interaction between flame front and turbulent eddies measured by the fractal dimension was shown to correlate with the eddy temporal activity.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appel, C., Mantzaras, J., Schaeren, R., Bombach, R. & Inauen, A. 2005 Turbulent catalytically stabilized combustion of hydrogen/air mixtures in entry channel flows. Combust. Flame 140, 7092.Google Scholar
Aung, K. T., Hassan, M. I. & Faeth, G. M. 1997 Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure. Combust. Flame 109, 124.Google Scholar
Baum, M., Poinsot, T. J., Haworth, D. C. & Darahiba, N. 1994 Direct numerical simulation of ${\text{H} }_{2} / {\text{O} }_{2} / {\text{N} }_{2} $ flames with complex chemistry in two-dimensional turbulent flows. J. Fluid Mech. 281, 132.Google Scholar
Bell, J. B., Cheng, R. K., Day, M. S. & Shepherd, I. G. 2007 Numerical investigation of Lewis number effects on lean premixed turbulent flames. Proc. Combust. Inst. 31, 13091317.Google Scholar
Bradley, D. 1992 How fast can we burn?. Proc. Combust. Inst. 24, 247262.Google Scholar
Bradley, D., Lawes, M., Liu, K., Verhelst, S. & Woolley, R. 2007 Laminar burning velocities of lean hydrogen–air mixtures at pressures up to $1. 0~\mathrm{MPa} $ . Combust. Flame 149, 162172.Google Scholar
Chakraborty, N. & Cant, R. S. 2011 Effect of Lewis number on flame surface density transport in turbulent premixed combustion. Combust. Flame 158, 17681787.Google Scholar
Chakraborty, N., Hartung, G., Katragadda, M. & Kaminski, C. F. 2011 Comparison of 2D and 3D density-weighted displacement speed statistics and implications for laser based measurements of flame displacement speed using direct numerical simulation data. Combust. Flame 158, 13721390.Google Scholar
Chaos, M. & Dryer, F. L. 2008 Syngas combustion kinetics and applications. Combust. Sci. Technol. 180, 10531096.Google Scholar
Chen, Z. 2011 On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames. Combust. Flame 158, 291300.CrossRefGoogle Scholar
Chen, Y. C. & Mansour, M. S. 1999 Topology of turbulent premixed flame fronts resolved by simultaneous planar imaging of LIPF of OH radical and Rayleigh scattering. Exp. Fluids 26, 277287.Google Scholar
Cheng, R. K. 2009 Turbulent combustion properties of premixed syngas. In Synthesis Gas Combustion – Fundamentals and Applications (ed. Lieuwen, T., Yang, V. & Yetter, R.), pp. 129168. CRC.CrossRefGoogle Scholar
Clavin, P. 1985 Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci. 11, 159.Google Scholar
Cohe, C., Halter, F., Chauveau, C., Gokalp, I. & Gulder, O. L. 2007 Fractal characterisation of high-pressure and hydrogen-enriched ${\text{CH} }_{4} $ –air turbulent premixed flames. Proc. Combust. Inst. 31, 13451352.CrossRefGoogle Scholar
Creta, F., Fogla, N. & Matalon, M. 2011 Turbulent propagation of premixed flames in the presence of Darrieus–Landau instability. Combust. Theor. Model. 15, 267298.CrossRefGoogle Scholar
Creta, F. & Matalon, M. 2011 Propagation of wrinkled turbulent flames in the context of hydrodynamic theory. J. Fluid Mech. 680, 225264.Google Scholar
Daniele, S., Jansohn, P. & Boulouchos, K. 2009 Flame front characteristic and turbulent flame speed of lean premixed syngas combustion at gas turbine relevant conditions. Proc. ASME Turbo Expo. 2009, 2, 393–400.Google Scholar
Daniele, S., Jansohn, P., Mantzaras, J. & Boulouchos, K. 2011 Turbulent flame speed for syngas at gas turbine relevant conditions. Proc. Combust. Inst. 33, 29372944.Google Scholar
Foroutan-pour, K., Dutilleul, P. & Smith, D. L. 1999 Advances in the implementation of the box-counting method of fractal dimension estimation. Appl. Math. Comput. 105, 195210.Google Scholar
Gouldin, F. C., Bray, K. N. C. & Chen, J. Y. 1989 Chemical closure-model for fractal flamelets. Combust. Flame 77, 241259.CrossRefGoogle Scholar
Griebel, P., Bombach, R., Inauen, A., Kreutner, W. & Schaeren, R. 2002 Structure and NO emission of turbulent high pressure lean premixed methane/air flames. In Proceedigns of 6th European Conference on Industrial Furnaces and Boilers, pp. 4554. INFUB.Google Scholar
Gu, X. J., Haq, M. Z., Lawes, M. & Woolley, R. 2000 Laminar burning velocity and Markstein lengths of methane–air mixtures. Combust. Flame 121, 4158.Google Scholar
Gulder, O. L. & Smallwood, G. J. 1995 Inner cutoff scale of flame surface wrinkling in turbulent premixed flames. Combust. Flame 103, 107114.Google Scholar
Gulder, O. L., Smallwood, G. J., Wong, R., Snelling, D. R., Smith, R., Descamps, B. M. & Sautet, J. C. 2000 Flame front surface characteristics in turbulent premixed propane/air combustion. Combust. Flame 120, 407416.Google Scholar
Hoffmann, S., Bartlett, M., Finkenrath, M., Evulet, A. & Ursin, T. P. 2009 Performance and cost analysis of advanced gas turbine cycles with precombustion ${\text{CO} }_{2} $ Capture. Trans. ASME: J. Engng Gas Turbines Power 131, 021701.Google Scholar
Huang, Z., Zhang, Y., Zeng, K., Liu, B., Wang, Q. & Jiang, D. M. 2006 Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combust. Flame 146, 302311.Google Scholar
Ichikawa, Y., Otawara, Y., Kobayashi, H., Ogami, Y., Kudo, T., Okuyama, M. & Kadowaki, S. 2011 Flame structure and radiation characteristics of $\text{CO} / {\text{H} }_{2} / {\text{CO} }_{2} $ /air turbulent premixed flames at high pressure. Proc. Combust. Inst. 33, 15431550.CrossRefGoogle Scholar
Kobayashi, H. & Kawazoe, H. 2000 Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames. Proc. Combust. Inst. 28, 375382.Google Scholar
Kobayashi, H., Otawara, Y., Wang, J., Matsuno, F., Ogami, Y., Okuyama, M., Kudo, T. & Kadowaki, S. 2013 Turbulent premixed flame characteristics of a $\text{CO} / {\text{H} }_{2} / {\text{O} }_{2} $ mixture highly diluted with ${\text{CO} }_{2} $ in a high-pressure environment. Proc. Combust. Inst. 34, 14371445.CrossRefGoogle Scholar
Kobayashi, H., Seyama, K., Hagiwara, H. & Ogami, Y. 2005 Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature. Proc. Combust. Inst. 30, 827834.Google Scholar
Kobayashi, H., Tamura, K., Maruta, K., Niioka, & Williams, F. A. 1996 Burning velocity of turbulent premixed flames in a high-pressure environment. Proc. Combust. Inst. 26, 389396.Google Scholar
Kwon, O. C. & Faeth, G. M. 2001 Flame/stretch interactions of premixed hydrogen-fueled flames: measurements and predictions. Combust. Flame 124, 590610.CrossRefGoogle Scholar
Lachaux, T., halter, F., Chauveau, C., Gökalp, I. & Shepherd, I. G. 2005 Flame front analysis of high-pressure turbulent lean premixed methane–air flames. Proc. Combust. Inst. 30, 819826.CrossRefGoogle Scholar
Lamoureux, N., Djebaili-Chaumeix, N. & Paillard, C. E. 2003 Laminar flame velocity determination for ${\text{H} }_{2} $ –air–He– ${\text{CO} }_{2} $ mixtures using the spherical bomb method. Exp. Therm. Fluid Sci. 27, 385393.Google Scholar
Landau, L. 1944 On the theory of slow combustion. Acta Physicochim. USSR 19, 7785.Google Scholar
Law, C. K., Jomaas, G. & Bechtold, J. K. 2005 Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment. Proc. Combust. Inst. 30, 159167.Google Scholar
Li, J., Zhao, Z. W., Kazakov, A., Chaos, M., Dryer, F. L. & Scire, J. J. 2007 A comprehensive kinetic mechanism for CO, ${\text{CH} }_{2} \text{O} $ , and ${\text{CH} }_{3} \text{OH} $ combustion. Intl J. Chem. Kinet. 39, 109136.CrossRefGoogle Scholar
Lin, Y.-C 2013 Hydrogen combustion for gas turbines applications (PhD thesis, ongoing), Swiss Federal Institute of Technology ETH-Zurich.Google Scholar
Lipatnikov, A. & Chomiak, J. 2005 Molecular transport effects on turbulent flame propagation and structure. Prog. Energy Combust. Sci. 31, 173.CrossRefGoogle Scholar
Lipatnikov, A. & Chomiak, J. 2010 Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36, 1102.Google Scholar
Mandelbrot, B. B. 1985 Self-affine fractals and fractal dimension. Phys. Scr. 32, 257260.CrossRefGoogle Scholar
Mantzaras, J. 1992 Geometrical properties of turbulent premixed flames: comparison between computed and measured quantities. Combust. Sci. Technol. 86, 135162.Google Scholar
Mantzaras, J., Felton, P. G. & Bracco, F. V. 1989 Fractals and turbulent premixed engine flames. Combust. Flame 77, 295310.Google Scholar
Metghalchi, M. & Keck, J. C. 1980 Laminar burning velocity of propane–air mixtures at high-temperature and pressure. Combust. Flame 38, 143154.Google Scholar
Natarajan, J., Lieuwen, T. & Seitzman, J. 2007 Laminar flame speeds of ${\text{H} }_{2} $ /CO mixtures: effect of ${\text{CO} }_{2} $ dilution, preheat temperature, and pressure. Combust. Flame 151, 104119.Google Scholar
North, G. L. & Santavicca, D. A. 1990 The fractal nature of premixed turbulent flames. Combust. Sci. Technol. 72, 215232.CrossRefGoogle Scholar
Peters, N. 1999 The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107132.Google Scholar
Petersen, B. R. & Ghandhi, J. B. 2009 High resolution scalar dissipation measurements in an IC engine. SAE Intl J. Engines 2, 475491.Google Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. R.T. Edwards.Google Scholar
Poinsot, T., Veynante, D. & Candel, S. 1991 Quenching processes and premixed turbulent combustion diagrams. J. Fluid Mech. 228, 561606.Google Scholar
Pope, S. B. 2001 Turbulent Flows. Cambridge University Press.Google Scholar
Renou, B. & Boukhalfa, A. 2001 An experimental study of freely propagating premixed flames at various Lewis numbers. Combust. Sci. Technol. 162, 347370.CrossRefGoogle Scholar
Schelkin, K. I. 1943 On combustion in turbulent flow. Zh. Tekh. Fiz. 13, 520530.Google Scholar
Shepherd, I. G., Cheng, R. K. & Talbot, L. 1992 Experimental criteria for the determination of fractal parameters of premixed turbulent flames. Exp. Fluids 13, 386392.Google Scholar
Siewert, P. 2005 Flame front characteristics of turbulent premixed lean methane/air flames at high-pressure and high-temperature. PhD thesis, Swiss Federal Institute of Technology ETH-Zurich.Google Scholar
Sivashinsky, G. I. 1983 Instabilities, pattern-formation, and turbulence in flames. Annu. Rev. Fluid Mech. 15, 179199.CrossRefGoogle Scholar
Sivashinsky, G. I. 1988 Cascade-renormalization theory of turbulent flame speed. Combust. Sci. Technol. 62, 7796.Google Scholar
Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C. Jr., Lissianski, V. V. & Quin, Z. 2000 An optimized detailed chemical reaction mechanism for methane combustion. Gas Research Institute.Google Scholar
Soille, P. & Rivest, J. F. 1996 On the validity of fractal dimension measurements in image analysis. J. Vis. Commun. Image R. 7, 217229.Google Scholar
Sung, C. J. & Law, C. K. 2008 Fundamental combustion properties of ${\text{H} }_{2} / \text{CO} $ mixtures: ignition and flame propagation at elevated pressures. Combust. Sci. Technol. 180, 10971116.CrossRefGoogle Scholar
Takeno, T., Murayama, M. & Tanida, Y. 1990 Fractal analysis of turbulent premixed flame surface. Exp. Fluids 10, 6170.Google Scholar
Tock, L & Marechal, F. 2012 ${\text{H} }_{2} $ processes with ${\text{CO} }_{2} $ mitigation: thermo-economic modeling and process integration. Intl J. Hydrogen Energy 37, 1178511795.Google Scholar
Venkateswaran, P., Marshall, A., Hyuk-Shin, D., Nobble, D., Seitzman, J. & Lieuwen, T. 2011 Measurements and analysis of turbulent consumption speeds of ${\text{H} }_{2} / \text{CO} $ mixtures. Combust. Flame 158, 16021614.Google Scholar
Weiss, M., Zarzalis, N. & Suntz, R. 2008 Experimental study of Markstein number effects on laminar flamelet velocity in turbulent premixed flames. Combust. Flame 154, 671691.Google Scholar
Yakhot, V. 1988 Propagation velocity of premixed turbulent flames. Combust. Sci. Technol. 60, 191214.Google Scholar
Yuen, F. T. C. & Gülder, Ö. L. 2013 Turbulent premixed flame front dynamics and implications for limits of flamelet hypothesis. Proc. Combust. Inst. 34, 13931400.CrossRefGoogle Scholar