Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T21:41:48.175Z Has data issue: false hasContentIssue false

Explosions at the water surface

Published online by Cambridge University Press:  02 July 2014

Adrien Benusiglio
Affiliation:
Ladhyx, Unité Mixte de Recherche 7646, Centre National de la Recherche Scientifique-École Polytechnique, 91120 Palaiseau, France
David Quéré
Affiliation:
Physique et Mécanique des Milieux Hétérogènes, Unité Mixte de Recherche 7636, Centre National de la Recherche Scientifique-Paris 6-Paris 7-École Supérieure de Physique et de Chimie Industrielles, 75005 Paris, France
Christophe Clanet*
Affiliation:
Ladhyx, Unité Mixte de Recherche 7646, Centre National de la Recherche Scientifique-École Polytechnique, 91120 Palaiseau, France
*
Email address for correspondence: [email protected]

Abstract

We study the shape and dynamics of cavities created by the explosion of firecrackers at the surface of a large pool of water. Without confinement, the explosion generates a hemispherical air cavity which grows, reaches a maximum size and collapses in a generic w-shape to form a final central jet. When a rigid open tube confines the firecracker, the explosion produces a cylindrical cavity that expands without ever escaping the free end of the tube. We discuss a potential flow model, which captures most of these features.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antkowiak, A., Bremond, N., Le Dizès, S. & Villermaux, E. 2007 Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241250.Google Scholar
Aristoff, J. M. & Bush, J. W. M. 2009 Water entry of small hydrophobic spheres. J. Fluid Mech. 619, 4578.Google Scholar
Aristoff, J. M., Truscott, T. T., Techet, A. H. & Bush, J. W. M. 2008 The water-entry cavity formed by low bond number impacts. Phys. Fluids 20, 091111.CrossRefGoogle Scholar
Bergmann, R., Van Der Meer, D., Gekle, S., Van Der Bos, A. & Lohse, D. 2010 Controlled impact of a disk on a water surface: cavity dynamics. J. Fluid Mech. 633, 381409.Google Scholar
Bowden, F. P. 1966 The formation of microjets in liquids under the influence of impact or shock. Phil. Trans. R. Soc. Lond. A 260, 9495.Google Scholar
Daer, J. P., Field, J. E. & Walton, A. J. 1988 Gas compression and jet formation in cavities collapsed by a shock wave. Nature 332, 505508.Google Scholar
Duclaux, V., Caillé, F., Duez, C., Ybert, C., Bocquet, L. & Clanet, C. 2007 Dynamics of transient cavities. J. Fluid Mech. 591, 119.Google Scholar
Duez, C., Ybert, C., Clanet, C. & Bocquet, L. 2007 Making a splash with water repellency. Nat. Phys. 3, 180183.Google Scholar
Enriquez, O. R., Peters, I. R., Gekle, S., Schmidt, L. E., Lohse, D. & van der Meer, D. 2012 Collapse and pinch-off of a non-axisymmetric impact-created air cavity in water. J. Fluid Mech. 701, 4058.Google Scholar
Enriquez, O. R., Peters, I. R., Gekle, S., Schmidt, L. E., Versluis, M., Van Der Meer, D. & Lohse, D. 2010 Collapse of nonaxisymmetric cavities. Phys. Fluids 22, 091104.Google Scholar
Gekle, S. & Gordillo, J. M. 2010 Generation and breakup of Worthington jets after cavity collapse. Part 1. Jet formation. J. Fluid Mech. 663, 293330.Google Scholar
Gekle, S., Gordillo, J. M., Van Der Meer, D. & Lohse, D. 2009 High-speed jet formation after solid object impact. Phys. Rev. Lett. 102, 034502-1, 034502-4.Google Scholar
Glasheen, J. W. & McMahon, T. A. 1996 A hydrodynamic model of locomotion in the basilisk lizard. Nature 380, 340342.Google Scholar
Gordillo, J. M. & Gekle, S. 2010 Generation and breakup of Worthington jets after cavity collapse. Part 2. Tip breakup of stretched jets. J. Fluid Mech. 663, 331346.Google Scholar
Le Goff, A., Quéré, D. & Clanet, C. 2013 Viscous cavities. Phys. Fluids 25, 043101.Google Scholar
Lorenceau, E., Quere, D., Ollitrault, J. Y. & Clanet, C. 2002 Gravitational oscillations of a liquid column in a pipe. Phys. Fluids 14, 19851992.Google Scholar
May, A. 1952 Vertical entry of missiles into water. J. Appl. Phys. 23, 13621372.Google Scholar
May, A.1975 Water entry and the cavity-running behavior of missiles. Tech. Rep. DTIC Document.Google Scholar
Meunier, P. & Leweke, T. 2003 Analysis and treatment of errors due to high velocity gradients in particle image velocimetry. Exp. Fluids 35, 408421.Google Scholar
Meunier, P. & Leweke, T. 2005 Elliptic instability of a co-rotating vortex pair. J. Fluid Mech. 533, 125160.Google Scholar
Peters, I. R., Tagawa, Y., Oudalov, N., Sun, C., Prosperetti, A., Lohse, D. & van der Meer, D. 2013 Highly focused supersonic microjets: numerical simulations. J. Fluid Mech. 719, 587605.Google Scholar
Séon, T. & Antkowiak, A. 2012 Large bubble rupture sparks fast liquid jet. Phys. Rev. Lett. 109, 014501.Google Scholar
Seymour, R. S. & Hetz, S. K. 2011 The diving bell and the spider: the physical gill of Argyroneta aquatica . J. Expl Biol. 214, 21752181.Google Scholar
Tagawa, Y., Oudalov, N., Visser, C. W., Peters, I. R., van der Meer, D., Sun, C., Prosperetti, A. & Lohse, D. 2012 Highly focused supersonic microjets. Phys. Rev. X 2, 031002.Google Scholar
Taylor, G. 1950 The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. R. Soc. Lond. A 201, 175186.Google Scholar
Truscott, T. T., Brenden, P. E. & Belden, J. 2014 Water entry of projectiles. Annu. Rev. Fluid Mech. 46, 355378.Google Scholar
Worthington, A. M. 1908 A Study of Splashes. Longmans, Green, and Co.Google Scholar
Worthington, A. M. & Cole, R. S. 1900 Impact with a liquid surface studied by the aid of instantaneous photography. Paper II. Phil. Trans. R. Soc. Lond. A 194, 175199.Google Scholar