Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T16:05:03.742Z Has data issue: false hasContentIssue false

Evolution of a vortex in a strongly stratified shear flow. Part 1. Asymptotic analysis

Published online by Cambridge University Press:  22 April 2020

Julien Bonnici
Affiliation:
LadHyX, CNRS, École Polytechnique, 91128 Palaiseau CEDEX, France
Paul Billant*
Affiliation:
LadHyX, CNRS, École Polytechnique, 91128 Palaiseau CEDEX, France
*
Email address for correspondence: [email protected]

Abstract

In this paper, we investigate the dynamics of an initially vertical vortex embedded in a shear flow in a stratified fluid by means of a long-wavelength analysis. The main goal is to determine, whether or not, the Kelvin–Helmholtz instability can develop unconditionally as speculated by Lilly (J. Atmos. Sci., vol. 40, 1983, pp. 749–761). The analysis is performed in the case of the Lamb–Oseen vortex profile and a shear flow uniform in the horizontal and varying sinusoidally along the vertical using the assumption $\hat{k}_{z}a_{0}F_{h}\ll 1$, where $\hat{k}_{z}$ is the vertical wavenumber, $a_{0}$ the vortex radius and $F_{h}$ the horizontal Froude number based on the circulation of the vortex. The results show that the vortex axis is advected not only in the direction of the shear flow but also in the perpendicular direction owing to the self-induced motion of the vortex. In addition, internal waves are transiently excited at the beginning, generating an initial non-hydrostatic regime. Their relative effects on the displacements of the vortex axis are weak except initially. The angular velocity of the vortex decays owing to a dynamic effect and viscous effects related to the vertical shear. The former effect is due to the squeezing of isopycnals in the vortex core, which implies a decrease of the vertical vorticity to satisfy potential vorticity conservation. In addition, a horizontal velocity field with an azimuthal wavenumber $m=2$ is generated, meaning that the shape of the vortex becomes slightly elliptical. We further show that the minimum asymptotic Richardson number is bounded, $\min (Ri)>3.43$, when $\hat{k}_{z}a_{0}F_{h}\ll 1$ and therefore cannot go below the critical value $1/4$. This is because the growth of the vertical shear of the horizontal velocity of the vortex saturates owing to the decay of its angular velocity and because the squeezing of isopycnals increases the stratification strength. This suggests that the shear instability cannot always develop in strongly stratified flows, contrary to the conjecture of Lilly (as above). These predictions will be tested against direct numerical simulations in Part 2.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Augier, P. & Billant, P. 2011 Onset of secondary instabilities on the zigzag instability in stratified fluids. J. Fluid Mech. 682, 120131.CrossRefGoogle Scholar
Augier, P., Chomaz, J.-M. & Billant, P. 2012 Spectral analysis of the transition to turbulence from a dipole in stratified fluid. J. Fluid Mech. 713, 86108.CrossRefGoogle Scholar
Billant, P. 2010 Zigzag instability of vortex pairs in stratified and rotating fluids. Part 1. General stability equations. J. Fluid Mech. 660, 354395.CrossRefGoogle Scholar
Billant, P. & Bonnici, J. 2020 Evolution of a vortex in a strongly stratified shear flow. Part 2. Numerical simulations. J. Fluid Mech. 893, A18.Google Scholar
Billant, P. & Chomaz, J.-M. 2000 Three-dimensional stability of a vertical columnar vortex pair in a stratified fluid. J. Fluid Mech. 419, 6591.CrossRefGoogle Scholar
Billant, P. & Chomaz, J.-M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13, 16451651.CrossRefGoogle Scholar
Bonnici, J.2018 Décorrélation verticale d’un tourbillon soumis à un champ de cisaillement dans un fluide fortement stratifié. PhD thesis, LadHyX, Université Paris-Saclay.Google Scholar
Boulanger, N., Meunier, P. & Le Dizès, S. 2007 Structure of a stratified tilted vortex. J. Fluid Mech. 583, 443458.CrossRefGoogle Scholar
Boulanger, N., Meunier, P. & Le Dizès, S. 2008 Tilt-induced instability of a stratified vortex. J. Fluid Mech. 596, 120.CrossRefGoogle Scholar
Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. 2007 Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343368.CrossRefGoogle Scholar
Deloncle, A., Billant, P. & Chomaz, J.-M. 2008 Nonlinear evolution of the zigzag instability in stratified fluids: a shortcut on the route to dissipation. J. Fluid Mech. 599, 229239.CrossRefGoogle Scholar
DeMaria, M. 1996 The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci. 53, 20762088.2.0.CO;2>CrossRefGoogle Scholar
Frank, W. M. & Ritchie, E. A. 1999 Effects of environmental flow upon tropical cyclone structure. Mon. Weath. Rev. 127, 20442061.2.0.CO;2>CrossRefGoogle Scholar
Godeferd, F. S. & Staquet, C. 2003 Statistical modelling and direct numerical simulations of decaying stably stratified turbulence. Part 2. Large-scale and small-scale anisotropy. J. Fluid Mech. 486, 115159.CrossRefGoogle Scholar
Herring, J. R. & Métais, O. 1989 Numerical experiments in forced stably stratified turbulence. J. Fluid Mech. 202, 97115.CrossRefGoogle Scholar
Howard, L. N. 1961 Note on a paper of John W. Miles. J. Fluid Mech. 10, 509512.CrossRefGoogle Scholar
Jones, S. C. 1995 The evolution of vortices in vertical shear. I. Initially barotropic vortices. Q. J. R. Meteorol. Soc. 121, 821851.CrossRefGoogle Scholar
Jones, S. C. 2000a The evolution of vortices in vertical shear. II. Large-scale asymmetries. Q. J. R. Meteorol. Soc. 126, 31373159.CrossRefGoogle Scholar
Jones, S. C. 2000b The evolution of vortices in vertical shear. III. Baroclinic vortices. Q. J. R. Meteorol. Soc. 126, 31613185.CrossRefGoogle Scholar
Jones, S. C. 2004 On the ability of dry tropical-cyclone-like vortices to withstand vertical shear. J. Atmos. Sci. 61, 114119.2.0.CO;2>CrossRefGoogle Scholar
Laval, J.-P., McWilliams, J. C. & Dubrulle, B. 2003 Forced stratified turbulence: successive transitions with Reynolds number. Phys. Rev. E 68 (3), 036308.Google ScholarPubMed
Le Dizès, S. & Laporte, F. 2002 Theoretical predictions for the elliptical instability in a two-vortex flow. J. Fluid Mech. 471, 169201.CrossRefGoogle Scholar
Lilly, D. K. 1983 Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci. 40, 749761.2.0.CO;2>CrossRefGoogle Scholar
Lindborg, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207242.CrossRefGoogle Scholar
Majda, A. J. & Grote, M. J. 1997 Model dynamics and vertical collapse in decaying strongly stratified flows. Phys. Fluids 9, 29322940.CrossRefGoogle Scholar
Marshall, J. S. & Parthasarathy, B. 1993 Tearing of an aligned vortex by a current difference in two-layer quasi-geostrophic flow. J. Fluid Mech. 255, 157182.CrossRefGoogle Scholar
Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496508.CrossRefGoogle Scholar
Moore, D. W. & Saffman, P. G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 346 (1646), 413425.Google Scholar
Päschke, E., Marschalik, P., Owinoh, A. Z. & Klein, R. 2012 Motion and structure of atmospheric mesoscale baroclinic vortices: dry air and weak environmental shear. J. Fluid Mech. 701, 137170.CrossRefGoogle Scholar
Reasor, P. D., Montgomery, M. T. & Grasso, L. D. 2004 A new look at the problem of tropical cyclones in vertical shear flow: vortex resiliency. J. Atmos. Sci. 61, 322.2.0.CO;2>CrossRefGoogle Scholar
Riley, J. J. & deBruynKops, S. M. 2003 Dynamics of turbulence strongly influenced by buoyancy. Phys. Fluids 15, 20472059.CrossRefGoogle Scholar
Riley, J. J. & Lelong, M.-P. 2000 Fluid motions in the presence of strong stable stratification. Annu. Rev. Fluid Mech. 32, 613657.CrossRefGoogle Scholar
Smith, R. K., Ulrich, W. & Sneddon, G. 2000 On the dynamics of hurricane-like vortices in vertical-shear flows. Q. J. R. Meteorol. Soc. 126, 26532670.CrossRefGoogle Scholar
Sutyrin, G. G. & Morel, Y. G. 1997 Intense vortex motion in a stratified fluid on the beta-plane: an analytical theory and its validation. J. Fluid Mech. 336, 203220.CrossRefGoogle Scholar
Vandermeirsch, F., Morel, Y. & Sutyrin, G. 2001 The net advective effect of a vertically sheared current on a coherent vortex. J. Phys. Oceanogr. 31, 22102225.2.0.CO;2>CrossRefGoogle Scholar
Vandermeirsch, F., Morel, Y. & Sutyrin, G. 2002 Resistance of a coherent vortex to a vertical shear. J. Phys. Oceanogr. 32, 30893100.2.0.CO;2>CrossRefGoogle Scholar
Waite, M. L. 2013 The vortex instability pathway in stratified turbulence. J. Fluid Mech. 716, 14.CrossRefGoogle Scholar
Waite, M. L. & Bartello, P. 2004 Stratified turbulence dominated by vortical motion. J. Fluid Mech. 517, 281308.CrossRefGoogle Scholar